大數據時代傳統社會調查過時了嗎

進入大數據時代,現代網路信息技術與智能設備的普及與運用,給傳統社會調查方法帶來挑戰。有學者提出,與通過數據挖掘技術獲得海量信息相比,傳統社會調查所獲取的信息不過是「小數據」。由此引發學界爭議:大數據時代是否還需要傳統社會調查?在大數據技術與方法廣泛應用的時代,傳統社會調查方法如何彰顯其獨特價值?近日,中國社會科學報記者就此采訪了相關學者。
大數據技術方便數據採集分析
「移動互聯網使得社會行動者的態度、行為被迅速信息化,並被互聯網設備記錄下來,為科研人員的相關研究提供了以往的信息收集手段無法採集的大量信息。同時也大大提高了人類記錄和採集相關信息的能力,極大降低了獲取某些信息的成本。」中國人民大學社會與人口學院副教授李丁說。
大數據技術改變了數據的獲取、處理和理解方式。據西安交通大學公共政策與管理學院執行院長杜海峰分析,數據獲取方式從收集問卷或訪談變成了網路、多媒體等多技術手段的綜合運用,更重要的是對象的變化,傳統的方法需要科學地從母體中抽樣,大數據的數據獲取對象可能直接就是母體;數據處理方式從傳統的屬性數據分析方法,過渡到基於結構的、以智能信息處理為主的綜合集成分析;數據理解方式,由傳統的統計因果發展到以「相關」特別是不同信息之間關系「凸顯」規律的解析。
在哈爾濱工業大學社會學系教授唐魁玉看來,大數據技術不僅在收集數據、整理數據和分析數據上具備優勢,而且其帶來的巨量交互性數據能夠為社會問題的整體性分析提供有效證據。這些變革正在為社會學重新整體性回歸「社會事實」奠定新方法論基礎,同時也無疑給傳統的問卷和深度訪談調查方法帶來挑戰。
社會調查方法具有特殊優勢
既然大數據技術在信息獲取與分析領域具有如此凸顯的優勢,是否意味著傳統社會調查將被取代呢?受訪學者並不贊同此類觀點。
一方面與傳統信息採集方式相比,大數據技術目前仍有其局限性;另一方面傳統信息採集方式仍具有獨特價值。唐魁玉分析說,以抽樣調查為例,在一些案例中,抽樣調查更加適用於那些有「遺失」的數據和代表性樣本。在面對復雜性、人際性社會問題的分析時,大數據方法還不夠細致入微。
「大數據一個非常重要的特徵是『價值密度低』,數據內容可能並不是特定研究者所關心的,因此不一定都能滿足特定問題研究的需要。」杜海峰提出,對於大數據獲得的信息,傳統社會調查不但是其必要的補充,也是專項研究更為必要的基礎資料。
大數據技術所獲取的信息相當於普查和非概率樣本,盡管如此,大數據也並非沒有邊界,如果不能認識或約定其界限,數據雖大,卻不能用於科學研究。如李丁所分析,被互聯網、智能設備感知和記錄的社會行動者並不能覆蓋全部的行動者。如果認識不到大數據的覆蓋率或者代表怎樣的群體,即便樣本規模再大,得出來的知識和規律也有可能是誤導性的。
此外,大數據的邊界還在於變數意義上。「不同企業和研究單位根據其自身需要所採集的數據雖有很大的樣本量,但每個樣本的變數信息很少。如果不能將這些不同類型的資料庫信息串並起來,增加變數即各個研究對象的有效信息量,那麼研究價值也非常有限。」李丁說。
李丁認為,傳統社會調查獲得的信息密度非常高,其目的直接性、設計性、標准化程度更強,效率非常高。「如果不使用傳統的社會調查方法,即便今天世界上能力最強的互聯網公司可能也無法從現有互聯網痕跡數據中獲得一個和中國綜合社會調查具有同等代表性、信度、效度、信息密度和相同變數的數據集。」
實現兩種方法優勢互補
正如李丁所說,一方面,在大數據時代背景下,從大數據中提取出有價值的信息和知識,有可能獲得有關行動者的新知識、社會運行的新規律;另一方面,研究人員應該認識到大數據的局限性,以及傳統研究方式的優勢,避免盲目崇拜。傳統的調查方式在獲得某些高密度的、具有統計代表性的數據上仍具有成本優勢和科學性優勢。
對於學界出現的將兩種方法非此即彼對立起來的爭議,唐魁玉認為,我們在對不同類型、不同復雜程度的社會事實和社會問題進行分析時,要恰當地選擇和使用傳統的社會調查或大數據方法。
未來的社會科學研究或可實現大數據與傳統社會調查方法的優勢互補。受訪學者提出一些設想。李丁認為,傳統的質性研究方法和抽樣調查方法能夠補充大數據的不足,幫助我們理解大數據的社會含義。大數據也能為傳統調查研究提供重要的信息補充,質性研究如果能夠在既有的訪談、觀察的基礎上,還能獲得受訪對象在互聯網的痕跡數據、社會交往數據、行動軌跡數據等,就能對研究對象有更全面的了解和把握。

Ⅱ 大數據時代的教育和傳統教育的區別

未來教育在互聯網等技術的作用下變的越來越個性化,通過對大數據技術的應用將有專利於個性化教育,屬標准化的學習內容由學生自組織學習,學校和教師更多的關注學生的個性化培養,教師由教學者逐漸轉變為助學者。在逐步到來大數據時代,互聯網教育與學校教育將逐漸分離,更多的交往互動、個性化服務和靈活的學制將使學校獲得新的生機。

Ⅲ 大數據時代處理數據理念相對於傳統數據處理有哪些變化

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和版處理的數據集合權,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),平台有hadoop

Ⅳ 大數據時代和傳統數據有什麼區別

大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。



(4)大數據時代對傳統擴展閱讀

大數據的價值體現在以三方面:


1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;


2、做小而美模式的中小微企業可以利用大數據做服務轉型;


3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。


大數據技術主要包括以下作用:


第一,對大數據的處理分析正成為新一代信息技術融合應用的結點。


移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。


第二,大數據是信息產業持續高速增長的新引擎。


面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。


第三,大數據利用將成為提高核心競爭力的關鍵因素。


各行各業的決策正在從「業務驅動」 轉變「數據驅動」。


大數據是大量、高速、多變的信息,它需要新型的處理方式去促成更強的決策能力、洞察力與最佳化處理。大數據為企業獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。

Ⅳ 大數據和傳統數據有什麼關系

大數據與傳統數據的核心差異在於其價值的不可估量。傳統數據的價值體現在信息傳遞與表徵,是對現象的描述與反饋,讓人通過數據去了解數據。而大數據是對現象發生過程的全記錄,通過數據不僅能夠了解對象,還能分析對象,掌握對象運作的規律,挖掘對象內部的結構與特點,甚至能了解對象自己都不知道的信息。
諸如某網路對一個人的描述與概括,記錄了這個人的身高、體重、出生年月、興趣愛好、日常活動、親朋好友等數據,這些算是傳統數據,通過這些傳統數據你能知道和認識這個人。如果用大數據的方式來記錄一個人,那就可以詳細到他幾點起床、睡眠質量、身體狀況、每個時間點在做什麼事等一系列過程數據,通過這些過程數據我們不僅知道和認識這個人,還能知道他的習慣性格,甚至能挖掘出隱藏在生活習慣中的情緒與內心活動等信息。這些都是傳統數據所無法體現的,也是大數據承載信息的豐富之處,在豐富的信息背後隱藏著巨大的價值,這些價值甚至能幫助人們達到「所思即所得」的境界。
大數據價值的特殊之處就在於它的可挖掘性,同樣的一堆數據,不同的人能得到不同層次的東西。就好像同樣見一個人,有些人只看他的外貌好不好看,有些人能從他的表情中讀出心理活動,從眼神中看出閱歷,從衣著打扮中讀出品味,從鞋子上讀出生活習慣。而這些深層次的非表象的內容需要技巧與實力去挖掘出來,這就是我們說的數據分析與數據挖掘。

Ⅵ 大數據時代對社會帶來哪些重要變革

大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。 大數據的價值體現在以下幾個方面: 1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷; 2) 做小而美模式的中長尾企業可以利用大數據做服務轉型; 3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

Ⅶ 大數據時代,傳統企業如何發力大數據

傳統企業應該如何行動才能享受大數據帶來的紅利呢?
第一,一切生產經營流程都需要流程化
這是企業能夠通過深入數據分析,實現自身優化的基礎,要有計劃的將企業生產經營中的數據保存下來,即便是目前看起來沒有用的數據,未來也可能產生巨大的價值,成為大數據企業的第一步,企業必須實現數據化。
第二,大家大數據平台
對於很多企業,做大數據並不意味著要自己去搭建數據中心,但是,企業要做大數據,必須要在IT基礎設施方面具有比較好的數據處理架構。值得注意的是,企業不僅僅要具備一個數據中心的硬體,還要考慮和企業業務方向結合。做企業的大數據管理應用平台,一定要從企業的業務出發,不能盲目跟風。
第三,培養數據挖掘和分析團隊
大數據的分析與傳統數據分析有很大的區別,傳統企業現有的數據分析主要基於數據報表等一些結構化的數據,很難分析出企業的經營全景。大數據的進入就需要分析人員具有更高的素質,既要有扎實的業務基礎又要有很強的數據挖掘能力。利用大數據平台和大數據分析將零散的市場數據化,客戶數據化接著將迅速的形成決策數據,這樣才能使企業及時把握市場環境的變化,從而做出快速的應對。
第四,建立開放性的數據共享制度
未來的大數據企業,一定要有共享的精神。一個企業的數據往往是有限的,往往需要有人共享來豐富自己的數據形態。這就需要企業不僅要有開放的心態,也需要企業具備數據交換和共享的能力。
第五,戰略性的數據資源儲備
數據就像石油,而且是放在聚寶盆中取之不盡用之不竭的石油,如果它被存儲下來。具有戰略眼光的企業,能夠判斷數據在未來的價值,願意花成本存儲一些潛藏巨大價值的數據。阿里巴巴投資高德,投資新浪這就說明了數據的重要性,胡水生認為所有這一切的本質還是想讓數據流動起來做更大的事情。

Ⅷ 大數據時代和傳統數據有什麼區別

1,無疑,數據信息的大爆炸不斷提醒著,未來將會因大數據技術而改變。大數據(Big
data)通常用來形容數字化時代下創造出的大量非結構化和半結構化數據。大數據無疑是未來影響各行各業發展的最受矚目的技術之一。2009年時,全世界關於大數據的研究項目還非常有限,從2011年開始,越來越多的管理者開始意識到,大數據將是未來發展不可規避的問題,而到2012年年底,世界財富500
強企業中90%的企業都開展了大數據的項目。IDC的研究顯示,到2015年,大數據市場前景將達到169億美元的規模。當前所有企業的商業數據每隔1.2年就將遞增一倍。

那麼,大數據為什麼成為所有人關注的焦點?大數據帶來了什麼樣的本質性改變?為此,與中國計算機學會大數據學術帶頭人、中國人民大學信息學院院長杜小勇教授進行了訪談。

互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果真的想做,可以來這里,這個手技的開始數字是一八七中間的是三兒
零最後的是一四二五零,按照順序組合起來就可以找到,想說的是,除非想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。

杜小勇教授認為,大數據帶來了三大根本改變:第一、大數據讓人們脫離了對演算法和模型的依賴,數據本身即可幫助人們貼近事情的真相;第二、大數據弱化了因果關系。大數據分析可以挖掘出不同要素之間的相關關系。人們不需要知道這些要素為什麼相關就可以利用其結果,在信息復雜錯綜的現代社會,這樣的應用將大大提高效率;第三、與之前的資料庫相關技術相比,大數據可以處理半結構化或非結構化的數據。這將使計算機能夠分析的數據范圍迅速擴大。

第三、由於能夠處理多種數據結構,大數據能夠在最大程度上利用互聯網上記錄的人類行為數據進行分析。大數據出現之前,計算機所能夠處理的數據都需要前期進行結構化處理,並記錄在相應的資料庫中。但大數據技術對於數據的結構的要求大大降低,互聯網上人們留下的社交信息、地理位置信息、行為習慣信息、偏好信息等各種維度的信息都可以實時處理,立體完整地勾勒出每一個個體的各種特徵。