人工智慧時代出版社
⑴ 有沒有出版社組織翻譯人工智慧相關書籍的
主要有以自下書籍:
1.《人工智慧》(美)尼爾森 鄭扣根譯 機械工業出版社
2. 人工智慧智能系統指南(英文版·第2版) (澳)尼格內維特斯基(Negnevitsky,M.) 機械工業出版社
3.《人工智慧:理論與實踐》(美)迪安 等著,顧國昌 等譯 電子工業出版社
4.《人工智慧:復雜問題求解的結構和策略》(美)George F.Luger 著,史忠植,張銀奎 等譯 機械工業出版社
5.《游戲編程中的人工智慧技術》(美)布克蘭德著,吳祖增,沙鷹翻譯 清華大學出版社
6.《人工智慧游戲編程真言》(美)拉比(Rabin,S.) 主編,庄越挺,吳飛 譯清華大學出版社
個人推薦《人工智慧》的原因:
第一,該書言簡意賅比較容易讀懂。
第二,有很多例子穿插在在課文中,幫助讀者能將每種人工智慧的方法應用於只見眾。第三,演算法或者數據結構的解釋被巧妙地闡釋出來,而不是對一大堆資料的冗長的總結。最後,編程章節讓學生能更深刻地理解資料,同時也穿插著許多對實現細節的參考。
⑵ 自學人工智慧有什麼書籍推薦
主要有以下書籍:
1.《人工智慧》(美)尼爾森 鄭扣根譯 機械工業出版社
2. 人工智慧智版能系統權指南(英文版·第2版) (澳)尼格內維特斯基(Negnevitsky,M.) 機械工業出版社
3.《人工智慧:理論與實踐》(美)迪安 等著,顧國昌 等譯 電子工業出版社
4.《人工智慧:復雜問題求解的結構和策略》(美)George F.Luger 著,史忠植,張銀奎 等譯 機械工業出版社
5.《游戲編程中的人工智慧技術》(美)布克蘭德著,吳祖增,沙鷹翻譯 清華大學出版社
6.《人工智慧游戲編程真言》(美)拉比(Rabin,S.) 主編,庄越挺,吳飛 譯清華大學出版社
個人推薦《人工智慧》的原因:
第一,該書言簡意賅比較容易讀懂。
第二,有很多例子穿插在在課文中,幫助讀者能將每種人工智慧的方法應用於只見眾。第三,演算法或者數據結構的解釋被巧妙地闡釋出來,而不是對一大堆資料的冗長的總結。最後,編程章節讓學生能更深刻地理解資料,同時也穿插著許多對實現細節的參考。
⑶ 人工智慧方面有什麼入門級的教材
人工智慧經常被人們認為是計算機科學中的一門高度復雜甚至令人生畏的學專科。長期以來人工智慧方屬面的書籍往往包含復雜矩陣代數和微分方程。本書形成於作者多年來給沒有多少微積分知識的學生授課時所用的講義,它假定讀者預先沒有編程的經驗,並說明了智能系統中的大部分基礎知識實際上是簡單易懂的。本書目前已經被國際上多所大學(例如,德國的馬德堡大學、日本的廣島大學、美國的波士頓大學和羅切斯特理工學院)採用。
如果你正在尋找關於人工智慧或智能系統設計課程的淺顯易懂的入門級教材,如果你不是計算機科學領域的專業人員,而又正在尋找介紹基於知識系統最新技術發展的自學指南,本書將是最佳選擇。
本書的主要內容:
基於規則的專家系統
模糊專家系統
基於框架的專家系統
人工神經網路
進化計算
混合智能系統
知識工程
數據挖掘
作者簡介:
澳大利亞塔斯馬尼亞大學電氣工程和計算機科學系教授,他的許多研究課題都涉及人工智慧和軟計算,一直致力於電氣工程,過程式控制制和環境工程中的、智能系統的開發和應用,他著有200多篇論文、兩本書,並獲得了四項發明專利。
⑷ 人工智慧有什麼好的參考書么
Peter Norvig 的《AI, Modern Approach 2nd》(無爭議的領域經典)
Bishop, 《Pattern Recognition and Machine Learning》. 沒有影印的,但是網上能下到。經典中的經典。Pattern Classification 和這本書是兩本必讀之書。《Pattern Recognition and Machine Learning》是很新(07年),深入淺出,手不釋卷。
推薦兩本有意思的書,
一本是《Simple Heuristics that Makes Us Smart》
另一本是《Bounded Rationality: The Adaptive Toolbox》
---------------------------------------------------------------------
<從CSDN上轉載的>
機器學習與人工智慧學習資源導引
我經常在 TopLanguage 討論組上推薦一些書籍,也經常問裡面的牛人們搜羅一些有關的資料,人工智慧、機器學習、自然語言處理、知識發現(特別地,數據挖掘)、信息檢索這些無疑是 CS 領域最好玩的分支了(也是互相緊密聯系的),這里將最近有關機器學習和人工智慧相關的一些學習資源歸一個類:
首先是兩個非常棒的 Wikipedia 條目,我也算是 wikipedia 的重度用戶了,學習一門東西的時候常常發現是始於 wikipedia 中間經過若干次 google ,然後止於某一本或幾本著作。
第一個是「人工智慧的歷史」(History of Artificial Intelligence),我在討論組上寫道:
而今天看到的這篇文章是我在 wikipedia 瀏覽至今覺得最好的。文章名為《人工智慧的歷史》,順著 AI 發展時間線娓娓道來,中間穿插無數牛人故事,且一波三折大氣磅礴,可謂"事實比想像更令人驚訝"。人工智慧始於哲學思辨,中間經歷了一個沒有心理學(尤其是認知神經科學的)的幫助的階段,僅通過牛人對人類思維的外在表現的歸納、內省,以及數學工具進行探索,其間最令人激動的是 Herbert Simon (決策理論之父,諾獎,跨領域牛人)寫的一個自動證明機,證明了羅素的數學原理中的二十幾個定理,其中有一個定理比原書中的還要優雅,Simon 的程序用的是啟發式搜索,因為公理系統中的證明可以簡化為從條件到結論的樹狀搜索(但由於組合爆炸,所以必須使用啟發式剪枝)。後來 Simon 又寫了 GPS (General Problem Solver),據說能解決一些能良好形式化的問題,如漢諾塔。但說到底 Simon 的研究畢竟只觸及了人類思維的一個很小很小的方面 —— Formal Logic,甚至更狹義一點 Dective Reasoning (即不包含 Inctive Reasoning , Transctive Reasoning (俗稱 analogic thinking)。還有諸多比如 Common Sense、Vision、尤其是最為復雜的 Language 、Consciousness 都還謎團未解。還有一個比較有趣的就是有人認為 AI 問題必須要以一個物理的 Body 為支撐,一個能夠感受這個世界的物理規則的身體本身就是一個強大的信息來源,基於這個信息來源,人類能夠自身與時俱進地總結所謂的 Common-Sense Knowledge (這個就是所謂的 Emboddied Mind 理論。 ),否則像一些老兄直接手動構建 Common-Sense Knowledge Base ,就很傻很天真了,須知人根據感知系統從自然界獲取知識是一個動態的自動更新的系統,而手動構建常識庫則無異於古老的 Expert System 的做法。當然,以上只總結了很小一部分我個人覺得比較有趣或新穎的,每個人看到的有趣的地方不一樣,比如裡面相當詳細地介紹了神經網路理論的興衰。所以我強烈建議你看自己一遍,別忘了裡面鏈接到其他地方的鏈接。
順便一說,徐宥同學打算找時間把這個條目翻譯出來,這是一個相當長的條目,看不動 E 文的等著看翻譯吧:)
第二個則是「人工智慧」(Artificial Intelligence)。當然,還有機器學習等等。從這些條目出發能夠找到許多非常有用和靠譜的深入參考資料。
然後是一些書籍
書籍:
1. 《Programming Collective Intelligence》,近年出的入門好書,培養興趣是最重要的一環,一上來看大部頭很容易被嚇走的:P
2. Peter Norvig 的《AI, Modern Approach 2nd》(無爭議的領域經典)。
3. 《The Elements of Statistical Learning》,數學性比較強,可以做參考了。
4. 《Foundations of Statistical Natural Language Processing》,自然語言處理領域公認經典。
5. 《Data Mining, Concepts and Techniques》,華裔科學家寫的書,相當深入淺出。
6. 《Managing Gigabytes》,信息檢索好書。
7. 《Information Theory:Inference and Learning Algorithms》,參考書吧,比較深。
相關數學基礎(參考書,不適合拿來通讀):
1. 線性代數:這個參考書就不列了,很多。
2. 矩陣數學:《矩陣分析》,Roger Horn。矩陣分析領域無爭議的經典。
3. 概率論與統計:《概率論及其應用》,威廉·費勒。也是極牛的書,可數學味道太重,不適合做機器學習的。於是討論組里的 Du Lei 同學推薦了《All Of Statistics》並說到
機器學習這個方向,統計學也一樣非常重要。推薦All of statistics,這是CMU的一本很簡潔的教科書,注重概念,簡化計算,簡化與Machine Learning無關的概念和統計內容,可以說是很好的快速入門材料。
4. 最優化方法:《Nonlinear Programming, 2nd》非線性規劃的參考書。《Convex Optimization》凸優化的參考書。此外還有一些書可以參考 wikipedia 上的最優化方法條目。要深入理解機器學習方法的技術細節很多時候(如SVM)需要最優化方法作為鋪墊。
王寧同學推薦了好幾本書:
《Machine Learning, Tom Michell》, 1997.
老書,牛人。現在看來內容並不算深,很多章節有點到為止的感覺,但是很適合新手(當然,不能"新"到連演算法和概率都不知道)入門。比如決策樹部分就很精彩,並且這幾年沒有特別大的進展,所以並不過時。另外,這本書算是對97年前數十年機器學習工作的大綜述,參考文獻列表極有價值。國內有翻譯和影印版,不知道絕版否。
《Modern Information Retrieval, Ricardo Baeza-Yates et al》. 1999
老書,牛人。貌似第一本完整講述IR的書。可惜IR這些年進展迅猛,這本書略有些過時了。翻翻做參考還是不錯的。另外,Ricardo同學現在是Yahoo Research for Europe and Latin Ameria的頭頭。
《Pattern Classification (2ed)》, Richard O. Duda, Peter E. Hart, David G. Stork
大約也是01年左右的大塊頭,有影印版,彩色。沒讀完,但如果想深入學習ML和IR,前三章(介紹,貝葉斯學習,線性分類器)必修。
還有些經典與我只有一面之緣,沒有資格評價。另外還有兩本小冊子,論文集性質的,倒是講到了了不少前沿和細節,諸如索引如何壓縮之類。可惜忘了名字,又被我壓在箱底,下次搬家前怕是難見天日了。
(呵呵,想起來一本:《Mining the Web - Discovering Knowledge from Hypertext Data》 )
說一本名氣很大的書:《Data Mining: Practical Machine Learning Tools and Techniques》。Weka 的作者寫的。可惜內容一般。理論部分太單薄,而實踐部分也很脫離實際。DM的入門書已經不少,這一本應該可以不看了。如果要學習了解 Weka ,看文檔就好。第二版已經出了,沒讀過,不清楚。
信息檢索方面,Du Lei 同學再次推薦:
信息檢索方面的書現在建議看Stanford的那本《Introction to Information Retrieval》,這書剛剛正式出版,內容當然up to date。另外信息檢索第一大牛Croft老爺也正在寫教科書,應該很快就要面世了。據說是非常pratical的一本書。
對信息檢索有興趣的同學,強烈推薦翟成祥博士在北大的暑期學校課程,這里有全slides和閱讀材料:http://net.pku.e.cn/~course/cs410/schele.html
maximzhao 同學推薦了一本機器學習:
加一本書:Bishop, 《Pattern Recognition and Machine Learning》. 沒有影印的,但是網上能下到。經典中的經典。Pattern Classification 和這本書是兩本必讀之書。《Pattern Recognition and Machine Learning》是很新(07年),深入淺出,手不釋卷。
最後,關於人工智慧方面(特別地,決策與判斷),再推薦兩本有意思的書,
一本是《Simple Heuristics that Makes Us Smart》
另一本是《Bounded Rationality: The Adaptive Toolbox》
不同於計算機學界所採用的統計機器學習方法,這兩本書更多地著眼於人類實際上所採用的認知方式,以下是我在討論組上寫的簡介:
這兩本都是德國ABC研究小組(一個由計算機科學家、認知科學家、神經科學家、經濟學家、數學家、統計學家等組成的跨學科研究團體)集體寫的,都是引起領域內廣泛關注的書,尤其是前一本,後一本則是對 Herbert Simon (決策科學之父,諾獎獲得者)提出的人類理性模型的擴充研究),可以說是把什麼是真正的人類智能這個問題提上了檯面。核心思想是,我們的大腦根本不能做大量的統計計算,使用fancy的數學手法去解釋和預測這個世界,而是通過簡單而魯棒的啟發法來面對不確定的世界(比如第一本書中提到的兩個後來非常著名的啟發法:再認啟發法(cognition heuristics)和選擇最佳(Take the Best)。當然,這兩本書並沒有排斥統計方法就是了,數據量大的時候統計優勢就出來了,而數據量小的時候統計方法就變得非常糟糕;人類簡單的啟發法則充分利用生態環境中的規律性(regularities),都做到計算復雜性小且魯棒。
關於第二本書的簡介:
1. 誰是 Herbert Simon
2. 什麼是 Bounded Rationality
3. 這本書講啥的:
我一直覺得人類的決策與判斷是一個非常迷人的問題。這本書簡單地說可以看作是《決策與判斷》的更全面更理論的版本。系統且理論化地介紹人類決策與判斷過程中的各種啟發式方法(heuristics)及其利弊(為什麼他們是最優化方法在信息不足情況下的快捷且魯棒的逼近,以及為什麼在一些情況下會帶來糟糕的後果等,比如學過機器學習的都知道樸素貝葉斯方法在許多情況下往往並不比貝葉斯網路效果差,而且還速度快;比如多項式插值的維數越高越容易 overfit,而基於低階多項式的分段樣條插值卻被證明是一個非常魯棒的方案)。
在此提一個書中提到的例子,非常有意思:兩個團隊被派去設計一個能夠在場上接住拋過來的棒球的機器人。第一組做了詳細的數學分析,建立了一個相當復雜的拋物線近似模型(因為還要考慮空氣阻力之類的原因,所以並非嚴格拋物線),用於計算球的落點,以便正確地接到球。顯然這個方案耗資巨大,而且實際運算也需要時間,大家都知道生物的神經網路中生物電流傳輸只有百米每秒之內,所以 computational complexity 對於生物來說是個寶貴資源,所以這個方案雖然可行,但不夠好。第二組則采訪了真正的運動員,聽取他們總結自己到底是如何接球的感受,然後他們做了這樣一個機器人:這個機器人在球拋出的一開始一半路程啥也不做,等到比較近了才開始跑動,並在跑動中一直保持眼睛於球之間的視角不變,後者就保證了機器人的跑動路線一定會和球的軌跡有交點;整個過程中這個機器人只做非常粗糙的軌跡估算。體會一下你接球的時候是不是眼睛一直都盯著球,然後根據視線角度來調整跑動方向?實際上人類就是這么乾的,這就是 heuristics 的力量。
相對於偏向於心理學以及科普的《決策與判斷》來說,這本書的理論性更強,引用文獻也很多而經典,而且與人工智慧和機器學習都有交叉,裡面也有不少數學內容,全書由十幾個章節構成,每個章節都是由不同的作者寫的,類似於 paper 一樣的,很嚴謹,也沒啥廢話,跟《Psychology of Problem Solving》類似。比較適合 geeks 閱讀哈。
另外,對理論的技術細節看不下去的也建議看看《決策與判斷》這類書(以及像《別做正常的傻瓜》這樣的傻瓜科普讀本),對自己在生活中做決策有莫大的好處。人類決策與判斷中使用了很多的 heuristics ,很不幸的是,其中許多都是在適應幾十萬年前的社會環境中建立起來的,並不適合於現代社會,所以了解這些思維中的缺點、盲點,對自己成為一個良好的決策者有很大的好處,而且這本身也是一個非常有趣的領域。
(完)
⑸ 推薦一本關於人工智慧的大學教材
1、書很多啊,《Artificial Intelligence: A Modern Approach》、《All of Statistics》、《Foundations of Machine Learning》、《Machine Learning: A Probabilistic Perspective》(剛出來的非常好的大部頭巨著)、《Machine Learning: An Algorithmic Perspective》、《Statistical foundations of machine learning》等
2、你也可以看看國外的一些機器學習和人工智慧的課程。推薦https://www.coursera.org/上standford的Andrew Ng的ML課,以及udacity上的AI導論http://www.udacity.com/overview/Course/cs271/CourseRev/1。AI這門課的主講之一Peter Norvig非常厲害,現在好像在google工作了。
⑹ 求人工智慧(電子工業出版社)電子版!
⑺ 人工智慧入門書籍
主要有以下書籍:
1.《人工智慧》(美)尼爾森 鄭扣根譯 機械工業出版社
2. 人工智慧智能系統指南(英文版·第2版) (澳)尼格內維特斯基(Negnevitsky,M.) 機械工業出版社
3.《人工智慧:理論與實踐》(美)迪安 等著,顧國昌 等譯 電子工業出版社
4.《人工智慧:復雜問題求解的結構和策略》(美)George F.Luger 著,史忠植,張銀奎 等譯 機械工業出版社
5.《游戲編程中的人工智慧技術》(美)布克蘭德著,吳祖增,沙鷹翻譯 清華大學出版社
6.《人工智慧游戲編程真言》(美)拉比(Rabin,S.) 主編,庄越挺,吳飛 譯清華大學出版社
個人推薦《人工智慧》的原因:
第一,該書言簡意賅比較容易讀懂。
第二,有很多例子穿插在在課文中,幫助讀者能將每種人工智慧的方法應用於只見眾。第三,演算法或者數據結構的解釋被巧妙地闡釋出來,而不是對一大堆資料的冗長的總結。最後,編程章節讓學生能更深刻地理解資料,同時也穿插著許多對實現細節的參考。