大數據分析事例
㈠ 什麼是大數據,大數據的典型案例有哪些
隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
㈡ 大數據分析的生活實例
大數據分析應用的最廣的是金融領域的大數據信用,做風控用。
㈢ 大數據時代,幾個例子告訴你什麼叫大數據
例子:比如,阿里每天都在收集每一個淘寶用戶的各個方面的信息參考(千人千面內)。然後再用大數據演算法來推容薦給你現在需要的產品,或者廣告,這個就是大數據。我說的是最淺顯的一種大數據。 大數據就沒有隱私,手機里的APP都回收集你的一切的數據,一切的數據,這樣呢,你在淘寶上看了看一款手機,那麼當你關了淘寶,打開了今日頭條,你如果注意的話,你會發現,頭條今日推薦你的廣告就是手機,文章內容也會偏向手機之內的。這就是大數據。
所謂大數據無非就是一大堆數據。
- 只不過,這個數據有點大:
小的 1、2 G,多的上千、上萬 G
- 然後企業利用這些數據 + 程序 code,分析出自己想要的東西:
用戶行為
用戶習慣
怎麼才能從用戶身上賺到錢。
㈣ 關於大數據應用有什麼例子
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。
有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
㈤ 什麼是大數據,懂的能用大數據舉個例子!
使用科技手段收集大量信息,對其加以分析.舉個例子,在某個商場個安裝攝像頭,對錄像中顧客行為進行分析得出某個種產品不好賣但看的人多原因改進,這就是大數據應用了
㈥ 生活中的大數據例子
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
目前位於美國加利福尼亞州的PredPol公司在某種程度上把利用大數據預測犯罪變成了現實。
PredPol 推出的犯罪活動預測軟體主界面是一張城市地圖,看起來與谷歌地圖相似。它會根據某一地區過往的犯罪活動統計數據,藉助特殊演算法,計算出某地發生犯罪的概率、犯罪類型,以及最有可能犯罪的時間段。
它還可以用紅色方框表示需要提高警惕的犯罪「熱點」地區,警方可以通過個人電腦、手機或平板電腦對其進行在線查看。
犯罪預測軟體實際上是從地震預測軟體進化而來的,它能處理大量犯罪數據,尤其是犯罪地點和犯罪時間,然後再聯系已知的犯罪行為,比如竊賊通常傾向於在他們最熟悉的社區犯罪等,最終給出一個較為完善的結果。
每次運算結束後,犯罪預測軟體會給出一張畫出了紅色方框的地圖,這些紅色方框代表盜竊行為可能發生的「熱點」地區,有些時候這些區域能准確地縮小至很小的范圍。
警察局的上司會吩咐屬下,當他們沒在處理報警電話時,就應該花時間在這些高危區域中巡邏,最好是每兩小時巡邏至少15分鍾。這樣做的重點更在於通過在軟體畫出的高危區中高調巡邏而降低犯罪,而非等案子發生後破案。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
Google流感趨勢(Google Flu Trends,GFT)是Google於2008年推出的一款預測流感的產品。Google認為,某些搜索字詞有助於了解流感疫情。Google流感趨勢會根據匯總的Google搜索數據,近乎實時地對全球當前的流感疫情進行估測。
3、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
目前手機移動網路實現了城鄉空間區域的全覆蓋,城鄉人口中手機終端的持有率和使用率已經達到相當高的比例,手機定位數據契合了城鄉人口空間分布與活動規律的分析需求。
根據手機信號在真實地理空間上的覆蓋情況,將手機用戶時間序列的移動信號數據,映射至現實的地理空間位置,即可完整、客觀地還原出手機用戶的現實活動軌跡,從而挖掘得到人口空間分布與活動聯系特徵信息。
4、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
(6)大數據分析事例擴展閱讀
經李克強總理簽批,2015年9月,國務院印發《促進大數據發展行動綱要》(以下簡稱《綱要》),系統部署大數據發展工作。
《綱要》明確,推動大數據發展和應用,在未來5至10年打造精準治理、多方協作的社會治理新模式,建立運行平穩、安全高效的經濟運行新機制,構建以人為本、惠及全民的民生服務新體系,開啟大眾創業、萬眾創新的創新驅動新格局,培育高端智能、新興繁榮的產業發展新生態。
未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。
㈦ 大數據分析的典型案例有什麼
我說幾個我知道的,智慧圖做了西單大悅城,k11 ,幫他們實現了業態規劃,圖聚也有,但是定位太差,數據准確度沒法說。
㈧ 大數據時代的案例分析
個案一
你開心他就買你焦慮他就拋
華爾街「德溫特資本市場」公司首席執行官保羅·霍廷每天的工作之一,就是利用電腦程序分析全球3.4億微博賬戶的留言,進而判斷民眾情緒,再以「1」到「50」進行打分。根據打分結果,霍廷再決定如何處理手中數以百萬美元計的股票。
霍廷的判斷原則很簡單:如果所有人似乎都高興,那就買入;如果大家的焦慮情緒上升,那就拋售。
這一招收效顯著——當年第一季度,霍廷的公司獲得了7%的收益率。
個案二
國際商用機器公司(IBM)估測,這些「數據」值錢的地方主要在於時效。對於片刻便能定輸贏的華爾街,這一時效至關重要。曾經,華爾街2%的企業搜集微博等平台的「非正式」數據;如今,接近半數企業採用了這種手段。
●「社會流動」創業公司在「大數據」行業生機勃勃,和微博推特是合作夥伴。它分析數據,告訴廣告商什麼是正確的時間,誰是正確的用戶,什麼是應該發表的正確內容,備受廣告商熱愛。
●通過喬希·詹姆斯的Omniture(著名的網頁流量分析工具)公司,你可以知道有多少人訪問你的網站,以及他們呆了多長時間——這些數據對於任何企業來說都至關重要。詹姆斯把公司賣掉,進賬18億美元。
●微軟專家吉拉德喜歡把這些「大數據」結果可視化:他把客戶請到辦公室,將包含這些公司的數據圖譜展現出來——有些是普通的時間軸,有些像蒲公英,有些則是鋪滿整個畫面的泡泡,泡泡中顯示這些客戶的粉絲正在談論什麼話題。
●「臉譜」數據分析師傑弗遜的工作就是搭建數據分析模型,弄清楚用戶點擊廣告的動機和方式。
處理和分析工具
用於分析大數據的工具主要有開源與商用兩個生態圈。
開源大數據生態圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
2、. Hypertable是另類。它存在於Hadoop生態圈之外,但也曾經有一些用戶。
3、NoSQL,membase、MongoDb
商用大數據生態圈:
1、一體機資料庫/數據倉庫:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、數據倉庫:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、數據集市:QlikView、 Tableau 、 以及國內的Yonghong Data Mart 。
㈨ 有哪些大數據分析案例
大數據的特徵就是體量龐大,數據量超級多,因此在允許的條件下,是對大體量的數據進行挖掘,提煉出有價值的東西。廣東韻為大數據分析。