『壹』 大數據有什麼特點呢

大數據從整體上看分為四個特點,
第一,大量。

衡量單位PB級別,存儲內版容多。
第二,權高速。

大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第三,多樣。

數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第四,價值。

大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。

『貳』 大數據三個特點的是什麼

大數據技術是指從各種各樣海量類型的數據中,快速獲得有價值信息的能力。版適用於大數據的技術權,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據具備以下4個特點:
一是數據量巨大。例如,人類生產的所有印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。
三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。
大數據解決方案可以咨詢南京中新賽克科技有限公司,提供海睿思OceanMind數據中台解決方案,OceanMind平台包含匯聚工具、數據接入、數據處理、數據管理、數據資產、數據服務匯流排、數據運維等基礎大數據治理模塊;同時提供豐富的數據能力引擎,包括數據雷達、文本挖掘、知識圖譜、知識服務、圖分析、數字沙盤、用戶中心等七大引擎。

『叄』 大數據平台特點是什麼

1. 高效分布式


有必要是高效的分布式體系。物聯網發生的數據量巨大,僅我國而言,就有5億多台智能電表,每台電表每隔15分鍾採集一次數據,一天全國智能電表就會發生500多億條記載。這么大的數據量,任何一台伺服器都無能力處理,因而處理體系有必要是分布式的,水平擴展的。


2. 實時處理


有必要是實時處理的體系。互聯網大數據處理,大家所了解的場景是用戶畫像、推薦體系、輿情分析等等,這些場景並不需求什麼實時性,批處理即可。可是關於物聯網場景,需求根據採集的數據做實時預警、決議計劃,延時要控制在秒級以內。


3. 高牢靠性


需求運營商等級的高牢靠服務。物聯網體系對接的往往是生產、經營體系,假如數據處理體系宕機,直接導致停產,發生經濟有丟失、導致對終端顧客的服務無法正常供給。比方智能電表,假如體系出問題,直接導致的是千家萬戶無法正常用電。


4. 高效緩存


需求高效的緩存功用。絕大部分場景,都需求能快速獲取設備當前狀態或其他信息,用以報警、大屏展示或其他。體系需求供給一高效機制,讓用戶能夠獲取全部、或契合過濾條件的部分設備的最新狀態。


5. 實時流式核算


需求實時流式核算。各種實時預警或猜測現已不是簡單的根據某一個閾值進行,而是需求經過將一個或多個設備發生的數據流進行實時聚合核算,不只是根據一個時間點、而是根據一個時間窗口進行核算。不僅如此,核算的需求也適當雜亂,因場景而異,應容許用戶自定義函數進行核算。

『肆』 大數據的特點主要是什麼

大數據的特點:來
1.
數據自體量巨大。從TB級別,躍升到PB級別。
2.
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3.
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4.
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
概念:
「大數據」是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。
優勢:
在大數據和大數據分析,他們對企業的影響有一個興趣高漲。大數據分析是研究大量的數據的過程中尋找模式,相關性和其他有用的信息,可以幫助企業更好地適應變化,並做出更明智的決策。

『伍』 大數據的特點包括哪些

1、容量():

數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):

數據類型的多樣性。

3、速度(Velocity):

指獲得數據的速度。

4、可變性(Variability):

妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):

數據的質量。

6、復雜性(Complexity):

數據量巨大,來源多渠道。

7、價值(value):

合理運用大數據,以低成本創造高價值。

大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(5)數據大數據特點是什麼擴展閱讀:

一、結構

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

二、意義

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。

有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。

與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。

大數據的價值體現在以下幾個方面:

1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷

2) 做小而美模式的中小微企業可以利用大數據做服務轉型

3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值

『陸』 大數據的特點主要有什麼

大數據的主要特點有:

准確(Veracity)

這是一個在討論大數據時時常被忽略的一個屬性,部分原因是這個屬性相對來說比較新,盡管它與其他的屬性同樣重要。這是一個與數據是否可靠相關的屬性,也就是那些在數據科學流程中會被用於決策的數據(而這不同於與傳統的數據分析流程),精確性與信噪比(signal-to-noise ratio)有關。

例如,在大數據中發現哪些數據對商業是真正有效的,這在信息理論中是個十分重要的概念。由於並不是所有的數據源都具有相等的可靠性,在這個過程中,大數據的精確性會趨於變化,如何增加可用數據的精確性是大數據的主要挑戰。

高速(Velocity)

大數據是在運動著的,通常處於很高的傳輸速度之下。它經常被認為是數據流,而數據流通常是很難被歸檔的(考慮到有限的網路存儲空間,單單是高速就已經是一個巨大的問題)。這就是為什麼只能收集到數據其中的某些部分。如果我們有能力收集數據的全部,長時間存儲大量數據也會顯得非常昂貴,所以周期性的收集數據遺棄一部分數據以節省空間,僅保留數據摘要(如平均值和方差)。 這個問題在未來會顯得更為嚴重,因為越來越多的數據正以越來越快的速度所產生。

體量(Volume)

大數據由大量數據組成,從幾個TB到幾個ZB。這些數據可能會分布在許多地方,通常是在一些連入網際網路的計算網路中。

一般來說,凡是滿足大數據的幾個V的條件的數據都會因為太大而無法被單獨的計算機處理。單單這一個問題就需要一種不同的數據處理思路,這也使得並行計算技術(例如MapRece)得以迅速崛起。

多樣(Variety)

在過去,數據或多或少是同構的,這種特點也使得它更易於管理。這種情況並不出現在大數據中,由於數據的來源各異,因此形式各異。這體現為各種不同的數據結構類型,半結構化以及完全非結構化的數據類型。

『柒』 大數據的基本特點有哪些

大數據的基本特點為:

1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):數據類型的多樣性。

3、速度(Velocity):指獲得數據的速度。

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。




(7)數據大數據特點是什麼擴展閱讀:

大數據分析的六個基本方面:

1、Analytic Visualizations(可視化分析)

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

2、Data Mining Algorithms(數據挖掘演算法)

可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

4、Data Quality and Master Data Management(數據質量和數據管理)

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。

5、數據存儲,數據倉庫

數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的基礎,承擔對業務系統數據整合的任務,為商業智能系統提供數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和訪問,為聯機數據分析和數據挖掘提供數據平台。


參考資料來源:網路-大數據

『捌』 大數據具有什麼特徵

第一、海量的數據規模。
大數據相較於傳統數據最大的區別就是海量的數據規模,這種規模大到「在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合」。就商業WiFi企業所擁有的數據而言,即便整合一個商場或者商業中心所採集到的數據也很難達到這種「超出范圍」的數據量,更不要說少有WiFi企業可以做到布點一整個商業中心,現在多數的商業WiFi企業還是處於小規模發展階段,所得到的數據多是某一個門店或者單獨營業個體的數據,並不能稱之為大數據。所以要想收集海量的數據,就目前的行業發展態勢而言,最佳的選擇是企業合作,通過合作,集合多家企業的數據,填補數據空白區域,增加數據量,真正意義上實現大數據到大數據的跨步。
第二、快速的數據流轉。
數據也是具有時效性的,採集到的大數據如果不經過流轉,最終只會過期報廢。尤其是對於商業WiFi企業來說,大多數商業WiFi企業採集到的數據都是在一些用戶的商業行為,這些行為往往具備時效性,例如,採集到某位用戶天在服裝商場的消費行為軌跡,如果不能做到這些數據的快速流轉、及時分析,那麼本次所採集到的數據可能便失去了價值,因為這位用戶不會每一天都在買衣服。快速流轉的數據就像是不斷流動的水,只有不斷流轉才能保證大數據的新鮮和價值。
第三、多樣的數據類型。
大數據的第三特徵就是數據類型的多樣性,首先用戶是一個復雜的個體,單一的行為數據是不足以描述用戶的。目前WiFi行業對大數據的使用多是通過分析用戶軌跡,了解用戶的行為習慣,由此進行用戶畫像,從而實現精確推送。但是單一的類型的數據並不足以實現用戶畫像,例如,筆者之前了解過一些企業可通過用戶某一段時間的在某一區域內的飲食數據,並由此在用戶進入這一區域的時候推送相關信息,但是這一信息只是單純的分析了用戶一段時間的飲食數據,並沒有考慮到用戶現階段的身體狀況、個人需求和經濟承受能力等等,所以這種推送的轉化率也就可想而知。
第四、價值密度低。
大數據本身擁有海量的信息,這種信息從採集到變現不要一個重要的過程——分析,只有通過分析才能實現大數據從數據到價值的轉變,但是眾所周知,大數據雖然擁有海量的信息,但是真正可用的數據可能只有很小一部分,從海量的數據中挑出一小部分數據本身就是各巨大的工作量,所以大數據的分析也常和雲計算聯繫到一起。只有集數十、數百或甚至數千的電腦分析能力於一身的雲計算才能完成對海量數據的分析,而很遺憾的是,目前WiFi行業中的絕大部分企業並不具備雲計算的能力

『玖』 大數據 特點

大數據(big data)是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。 大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。

適用領域
人工智慧,BI,工業4.0,雲計算,物聯網,互聯網+
特點
大量,高速、多樣、價值、真實性
提出者
維克托·邁爾-舍恩伯格、肯尼斯·庫

大數據與雲計算的關系
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。