城市交通大數據分析
㈠ 如何實現公交系統大數據的獲取與分析
實現公交系統大數抄據的獲取可通過襲公交卡,掃碼等方式,但是公交上車的人員不確定都會使用單一的支付方式,有的還是現金支付的,因此獲取的數據卻有一定的差異性。如今根據客流系統設備結合車載DVR來實現對客流的有效統計,通過DVR對接的系統報表實現對客流數據的科學性分析。
㈡ 你對大數據和智慧交通時代如何改進城市交通管理工作有哪些建議
大數據時代的城市交通管理關鍵要解決數據來源問題,打破現有部門、機構之間因為利益關系而對數據共享和交換的障礙,讓公眾參與到交通基本狀態信息的採集是一個必然有效的途徑,只是目前面臨各種法律法規的難題,以及網路覆蓋導致的速率和交通管理機構沒有提供便捷的數據採集上傳的入口。
解決了數據採集問題以後,其他的數據分析、決策分析和行政監管等工作,就看管理部門的執行力了。即便沒有行政作為的突破,借用商業運作也能對交通管理起到很好的促動作用。
㈢ 交通大數據分析會對智慧交通產生那些影響
隨著這些年我國城市化發展的加速,城市交通擁堵、交通污染日益嚴重,交通事故頻繁發生。眾所周知,智能交通成為改善城市交通的關鍵策略。因此,及時、准確獲取交通大數據並構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
交通行業現狀
我國智能交通發展始於上世紀90年代,在「十二五」規劃中,我國交通部進一步明確未來智能交通運輸的發展目標,例如,感知識別、網路傳輸、智能處理和數據挖掘等。在改善結構調整和城際溝通的支撐、引領雙重作用,成為城市交通最重要的發展領城。包括大數據等現代先進技術的應用,提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
我國新型城鎮化將需要形成城市群內部城市之間、城市內部的軌道交通系統,交通運輸環境進一步改善。包括大數據等現代先進技術的應用,目的在於提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
目前遇到的問題
1、海量數據
軌道交通系統每時每刻都在產生大量數據,來自故障維修系統、實時監控系統、項目實施進度系統、物資物料統計系統等,且數據增長速度越來越快,這些數據的價值在哪?該如何利用提升地鐵運營效率,確保項目交付的及時監控。
2.數據認知
大多數傳統系統,故障維修系統,實時監控系統,物資物料統計系統中,已有簡單的分析統計圖表,但數據格式比較單一,靈活性差,交互性低,管理者難以對數據有很好的認知。
3、管理決策
大數據運營在地鐵網路化、大客流運營常態下愈發凸現其對軌道交通安全、高效運行和乘客服務方面的重要作用,能迅速從底層數據中提取關鍵數據,以數據驅動運營方向,對決策提供科學支撐。
現在很多地方的交通大數據系統都用的BI平台,比如永洪科技,一般的大數據分析系統分為3個層次:
1、數據層以及建模層:整合交通行業各信息系統,打破信息孤島,實現數據共享。數據決策方面、銷售方面、運營方面關心的指標,建立不同分析主題集市。
2、業務層:梳理交通行業指標,將分析結果推送至展現層。
3、展現層:以豐富美觀的圖表展現方式,靈活多變的交互方式,將分析結果呈現給各角色管理人員。
基本上現在的大數據分析平台都可以做到以下幾個方面:
1、基於交通數據分析平台,決策層、管理層可能洞察軌交運行狀況。
2、應對軌交各系統數據量的迅速增長,基於明細數據,任意業務的計算及展現,可達到秒級響應。
3、運營和分析部門都能做部分自服務分析,以滿足實時探索分析需求。
4、能夠快速響應新的分析需求和變化,提高工作效率 。
㈣ 城市交通大數據可視化解決方案
作者 | 網路大數據
如今,城市交通擁堵狀況日益嚴重。雖說智能交通布局在不斷地完善,但交通管理仍舊收效甚微。數據獨立存儲難以融合應用、數據內在規律難尋、數據缺乏深度挖掘等諸多問題,其困難重重,該如何解決呢?不妨看看城市交通大數據可視化解決方案吧!
交通動態看得見,交通管理更簡便「大數據可視化」能夠將城市運行核心系統的各項關鍵數據進行可視化呈現,通過貼合實戰,從感官、操作、應用及數據四個維度解決交警個性化需求,構建業務場景深度應用,從而打通數據到決策的最短路徑。交通管理者可以根據實戰場景,利用各類圖表、趨勢圖、視覺效果將龐雜枯燥的數據展現出來,進而深度挖掘內在數據規律,以此指導決策,助力城市交通健康的發展。
系統架構分明,場景動態清晰通過前端感知系統,實時獲取城市交通動態信息。將各個子系統的數據錄入數據可視化平台進行融合、分析後,呈現出不同場景下的交通信息個性化視圖,從而為城市交通的管理和調控提供指導依據。
01強大的數據源整合能力
數據接入靈活多變,支持靜態數據、API、資料庫、本地數據四種數據對接模式,其中資料庫類型支持主流的MySQL、Oracle、MPP,滿足龐大、繁雜、多樣數據的集中匯聚展示,從而實現不單單是海量數據表面的業務處理而是通過清洗雜亂數據,優化數據結構來進行深層次的信息挖掘,發現數據的真正含義。
02豐富的圖表組件搭建工具
提供豐富多樣化的圖表組件工具,支持包括圓餅圖、極區圖、地圖、柱狀圖等超過1100項效果配置,用戶可以根據實際應用需求進行組合使用。通過結合大屏形成的組件搭配展示給人一種視覺沖擊,不僅僅是簡單的把數字用圖表表示,而是幫助用戶,發現數據背後的規律。
03多樣化的場景模板
數據可視化平台提供多種應用場景模板,合理運用搭配色彩、布局以及組件,解決用戶設計難題。簡單的修飾即可使用,業務全景一目瞭然。
04圖形化的編輯界面
用戶也可以通過友好的圖形化編輯模式完成樣式編輯和數據配置,創建屬於自己的個性化需求模板,並且可以進行分享,無需編程能力就能輕松搭建可視化應用。
數據可視功能強大,應用場景遍地開花從多個角度進行日常路網運行監測與協調管理、交通警情分析研判、重點人車管理,以滿足常態下交通監測監管、應急狀態下協同處置指揮調度的需要,滿足交通行業各個場景的應用需求。
01交通態勢可視化
通過對多項核心交通數據進行分析,實現交通態勢評估,輔助交通管理部門依據交通評估結果動態跟蹤、監測擁堵狀態和預測變化趨勢,為交通規劃、交通優化的提供量化指標依據。
02設施運維管理
可視化運維基於系統中各種設備的運行狀況,能及時直觀的反映故障點位信息,包括設備在線情況、完好率以及設備故障類型,幫助運維人員解決問題、提高效率,讓運維由繁化簡,更加有效的保障智能交通系統的順暢運行。
03重點車輛管控
通過構建重點車輛管控場景,可以幫助用戶直觀的了解到區域內所有重點車輛的類型和數量以及發放的通行證數量,實現對嫌疑車輛、布控車輛、涉案車輛、重點車輛等黑名單車輛實時監控告警強化交通管控力度。
04交通事件研判分析
針對歷史交通流、交通違法、交通事故等數據進行分析匯總整合、專題化分析,達到科學細化管理目的,為交通管理部門在交通組織、警力部署、設備布設等方面的優化提供決策依據。
以上便是城市交通大數據可視化解決方案的有關介紹。
該方案不僅打通了各交警業務子系統間的數據壁壘,將交通大數據真正的價值發掘出來;更以豐富的視圖展示滿足了實戰應用數據可視化場景需求,交通管理部門可通過清晰可視的交通動態圖進行車流管控及警力調度,為城市交通的管理與健康發展帶來極大的改善。
㈤ 大數據技術在城市交通檢測中有哪些常見應用
大數據在交通行業的應用還是比較多的,典型的就是網路地圖的工具,當你查詢線路的時候內,網路地圖容會給你推薦最佳的線路,大城市會給你最不容易堵車的線路,這就是根據大數據分析的結果而得出的,也是最典型的交通行業的大數據了。
㈥ 為什麼城市需要交通大數據
分析數據,得出結果,解決城市的建設和堵車問題,以及人流量問題,規劃城市的建設發展。—檸檬學院大數據
㈦ 交通大數據可以解決城市擁堵嗎
以往針對城市交通擁堵的處理方式,各個城市通常是採用優化市內交通體系、公共交通優先發展等傳統的硬體解決方案。這些方式能在一定程度上緩解交通擁堵,但是不能處理一些突發事件導致的擁堵,也不能從根本原因上去避免和解決擁堵。
因此,在既有的交通環境現狀下,怎樣實現提高通行速度成為城市管理者的新研究課題。城市大數據大腦正是在這種情況下產生的解決方案。以城市交通為例,它的大概思路是,全面監控和採集城市交通的大數據,通過先進的演算法自動優化調整交通資源,從而達到提高城市交通通行速度和效率的可能。需要五大系統才能高效運轉——超大規模計算平台、數據採集系統、數據交換中心、開放演算法平台、數據應用平台。
據悉,在杭州蕭山區的部分路段試點中,城市大腦通過智能調節紅綠燈,初步將車輛通行速度提升了3%至11%。這相當於把高峰期平均時速提高到21.8-23.5公里,試點的成效還是非常不錯的。城市數據大腦的未來還不僅限於現有的5萬路視頻攝像頭。它還將結合手機地圖、道路線圈記錄的車輛行駛速度和數量,公交車、計程車等運行數據,真正成為城市交通的大數據中心。
城市大腦即可在一個虛擬的數字城市中構建多種演算法模型,通過機器學習不斷迭代優化,計算出更「聰明」更有效率的方案。這些計算的背後都離不開一個強大的數據中心作為數據計算的支撐。據悉,國內像華為、銳捷都能為交通大數據的數據中心建設提供頂級配置的核心交換機,能夠滿足國內一線城市的交通大數據數據中心的建設需求,為城市提供強有力的支撐。
㈧ 大數據,數據挖掘在交通領域有哪些應用
交通領域大數據分析和應用的場景會相當多,這裡面要注意兩點,一個是大數據本身的技術處理平台,一個是數據分析和挖掘演算法。具體場景當時寫過點內容,如下:
對於公交線路規劃和設計是一個大數據潛在的應用場景,傳統的公交線路規劃往往需要在前期投入大量的人力進行OD調查和數據收集。特別是在公交卡普及後可以看到,對於OD流量數據完全可以從公交一卡通中採集到相關的交通流量和流向數據,包括同一張卡每天的行走路線和換乘次數等詳細信息。對於一個上千萬人口的大城市而言,每天的流量數據都會相當大,單一分析一天的數據可能沒有相關的價值,而分析一個周期的數據趨勢變化則會相當有價值。結合交通流量流向數據趨勢變化,可以很好的幫助公交部門進行公交運營線路的調整,換乘站的設計等很多內容。這個方法可能很早就有人想到,但是在公交卡沒有普及或海量數據處理和計算能力沒有跟上的時候確實很難實際落地操作,而現在則是完全可以落地操作的時候了。
從單一的公交流量流向數據動態分析僅僅是一個方面,大數據往往更加強調相關性分析。比如對於在某一個時間段內公交流量和流向數據發生明細的趨勢變化的時候,這個趨勢變化的究竟和哪些潛在的大事件或其它影響因素的變化存在相關性,如何去分析這些相關性並做出正確的應對。舉個簡單的例子來說,當市中心區內的房屋租金持續增長的時候一定會影響到交通流的變化,很多人可能會搬離到更遠的地方去居住,自然會形成更多的新增公交流量和流向信息。在《大數據時代》裡面談到更多的會關心相關性而不是因果只是一個方面的內容,實際上往往探索因果仍然很重要,就拿尿片和啤酒的例子來說看起來很簡單,但是究竟是誰發現了這種相關性才更加重要,發現相關性的過程往往是從果尋因的過程,否則你也很難真正就確定是具備相關性。
其次就智能交通來說,現在的智慧交通應用往往已經能夠很方面的進行整個大城市環境下的交通狀況監控並發布相應的道路狀況信息。在GPS導航中往往也可以實時的看到相應的擁堵路況等信息,而方便駕駛者選擇新的路線。但是這仍然是一種事後分析和處理的機制,一個好的智能導航和交通流誘導系統一定是基於大量的實時數據分析為每個車輛給出最好的導航路線,而不是在事後進行處理。對於智能交通中的交通流分配和誘導等模型很復雜,而且面對大量的實時數據採集,根據模型進行實時分分析和計算,給出有價值的結果,這個在原有的信息技術下確實很難解決。隨著物聯網和車聯網,分布式計算,基於大數據的實時流處理等各種技術的不斷城市,智能的交通導航和趨勢分析預測將逐步成為可能。
還有一個在國外大片中經常能夠看到的就是實時的車輛追蹤,隨著智慧城市的建設,城市裡面到處都是攝像頭採集數據,當鎖定一個車輛後如何根據車輛的特徵或車牌號等信息,實時的追蹤到車輛的行走路線和位置。這裡面往往需要實時的視頻數據採集,採集數據的實時分析和比對,給出相應的參考信息和數據。這個個人認為是具有相當大的難度,要知道對於視頻流和圖像信息的比對和分析往往更加耗費計算資源,需要更長的計算周期,要從城市成千上萬個攝像頭裡面採集數據並進行實時分析完全滿足大數據常說的海量數據,異構數據,速度和價值等四個維度的特徵。基於車輛能夠做到,基於人當然同樣也可以做到,希望這類應用能夠逐步的出現,至少現在從硬體水平能力和技術基礎上已經具備這種大數據應用的能力。
-
㈨ 交通出行大數據到底要分析什麼
相數科技表示,交通出行大數據信息包含如:結合城市地理信息數據、車輛信息、停放監測、地理圍欄等各類與交通相關的數據信息,經數據挖掘和深度分析,可以為城市規劃及管理提供科學、有價值的數據參考。