『壹』 大數據對營銷有什麼價值和意義

數據營銷助力廣告主贏在行業起跑線,MobTech以數據為基礎,深度洞察用戶行為需求,鎖定精準用戶群體,制定個性化的用戶溝通策略,數據驅動營銷。

『貳』 3C大數據市場部活動如何結合3C大數據。

你好,很高興認識你,有關3C大數據的問題,想問1下,3C大數據是根據甚麼結合數據統計的?我是市場部的,如果市場活動如何結合3C大數據統計數據?

『叄』 什麼是大數據,大數據為什麼重要,如何應用大數據

毫無疑問,各行各業因為大幅爆發的數據而正變得蒸蒸日上。在這年中,幾乎所有行業都或多或少的受到這一巨變的影響。科技滲透到各個領域,並且已經成為每個處理單元的必要元素。談到IT行業,具體來說,軟體和自動化是最基本的術語,並且用於處理循環的每個階段。
相較於穩定性而言,企業更關心的是敏捷性和創新性,通過大數據技術,可以幫助公司及時實現這一願望。大數據分析不僅使企業能夠跟隨瞬息萬變的潮流而不斷更新,而且還具有預測未來發展趨勢的能力,使企業占據有競爭力的優勢。
讓我們找到行業廣泛採用大數據的原因:
1.大數據是企業核心競爭力,也是公司的軟實力
大數據席捲了全球,並帶來了驚人的利益,這一力量無需多說。大數據使IBM、亞馬遜等全球頂尖公司受益,這些公司通過利用大數據開發一些前沿的技術,為客戶提供高端服務。
「採用大數據,雲計算和移動戰略的企業發展狀況超過沒有採用這些技術的同行53%。」——《福布斯》
在戴爾開展的一項調查中顯示,採用大數據、雲計算以及移動戰略的企業中,優勢更加明顯,也就是,這些企業中有53%採用大數據起步較晚或者尚未採用,在這一結果令人驚訝不已。
雖然大數據尚處於初級階段,但通過在處理過程中,融合這一理念,將為企業贏得50%的利潤。顯然,在如今的商業中,大數據顯現的驚人優勢並不亞於石油或煤炭帶來的利益。
2.掌握數據能力,開采「暗數據」
全球著名的咨詢公司Gartner公司對黑暗數據的定義是「組織在正常業務活動過程中收集、處理和存儲的信息資產,通常不能用於其他目的」。
然而,大數據系統的出現使得這些公司能夠將尚未開拓的數據投入使用,並從中提取有意義的信息。過去沒有被認可或認為毫無用處的數據突然成為公司的財富,這一點令人驚訝不已。通過大數據分析,這些公司可以加快流程,從而降低運營成本。
3.軟體正在吞噬整個世界數據爭奪戰正在打響
我們目前處於數據驅動型經濟中,如果無法分析當前或未來的趨勢,任何組織都無法生存下去。搶奪數據已經成為決定下一步行動方案的關鍵。
客戶逐漸成為所有組織的焦點,對於及時滿足客戶的需求這一任務非常迫切。只有在強大的軟體支持下,業務戰略才有可能會支撐和加速業務運營。這最終促成了強大的大數據技術的需求,可以以許多方式使組織受益。
4.決策指導更智能更快速更精準
在這個激烈的競爭時代,人人都想脫穎而出。但問題是如何實現這一期望?雖然公司與競爭對手持有相同的運營模式,但公司應當如何展現其獨一無二?答案在於公司採用的策略。為了表現優於競爭對手,做出良好和智慧決策的能力在每一步中發揮關鍵作用。這些決定不僅應該是好的決定,而且應該盡可能做出又快又明智的決定,使公司能夠在積極的主動出擊。
將大數據分析納入流程的做法揭示了非結構化數據,從而有助於管理者以系統的方式分析其決策,並在需要時採取替代方法。
5.以用戶為中心用戶行為數據是營銷關鍵
現在客戶有機會隨時隨地購物,在相關信息幫助下,對於公司需要做出比之前更敏捷的反應這一要求而言具有更大的挑戰。但是公司將如何不斷地實現這一點呢?答案是藉助「大數據」。客戶動向是不斷變化的,因此營銷人員的策略也應該做出相應調整。通過整合過去和實時數據來評估客戶的品味和喜好,這樣可以使公司採取更快捷的應對措施。
例如,亞馬遜通過利用強大的大數據引擎的能力,從一個以產品為基礎的公司發展成為囊括1.52億客戶在內的大型市場參與者。亞馬遜旨在通過跟蹤客戶的購買趨勢,並為營銷人員提供他們即時需要的所有相關信息,從而來為客戶服務。此外,亞馬遜通過實時監控全球15億種產品,成功滿足了客戶的需求。
6.通過利用數據倉庫使數據資產變現
這些公司越來越大,因此不同的流程產生不同的數據。資料倉儲中的許多重要信息仍然無法訪問。然而,公司已經能夠使用大數據分析這一武器來挖掘這座大山,讓分析師和工程師深入研究,並提供新穎而又有意義的見解。
經過這番分析,有一件事值得肯定的是,這是一個高度數字化和技術驅動時代的開端,並伴隨著強大的實時大數據分析能力。

『肆』 大數據給我們的管理活動帶來什麼挑戰

一、大數據時代網路輿情管理面臨的新形勢,大數據意味著人類可以分析和使用的數據大量增加,有效管理和駕馭海量數據的難度不斷增長,網路輿情管理面臨全新的機遇和挑戰。
二是信息選擇性傳播的挑戰。網上數據無限性和網民關注能力有限性之間的矛盾,加劇了社會輿論的「盲人摸象」效應。
三是輿論話語權分散的挑戰。大數據時代各類數據隨手可得,越來越多的機構、個人通過數據挖掘和分析得出的各種結論會不脛而走,有效管理輿情的難度越來越大。

『伍』 大數據活動在哪舉行

大數據活動在貴州貴陽舉行

『陸』 常見大數據應用有哪些

Gartner的分析師Doug Laney在講解大數據案例時提到過8個更有新意更典型的案例,可幫助更清晰的理解大數據時代的到來。
1. 梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2. Tipp24 AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3. 沃爾瑪的搜索。這家零售業寡頭為其網站自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4. 快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5. Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6. PredPol Inc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
8. American Express(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。

『柒』 大數據包括哪些

大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存回儲、NoSQL資料庫答、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
大數據主要技術組件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大數據技術包括數據採集,數據管理,數據分析,數據可視化,數據安全等內容。數據的採集包括感測器採集,系統日誌採集以及網路爬蟲等。數據管理包括傳統的資料庫技術,nosql技術,以及對於針對大規模數據的大數據平台,例如hadoop,spark,storm等。數據分析的核心是機器學習,當然也包括深度學習和強化學習,以及自然語言處理,圖與網路分析等。

『捌』 大數據對營銷有什麼價值和意義

1.對用戶個體特徵與行為的分析
只有積累足夠的用戶數據,才能分析出用戶的喜好與購買習慣等,甚至做到「比用戶更了解用戶自己」。這是大數據營銷的前提與出發點,也是最核心的價值。無論如何,那些過去將「一切以客戶為中心」作為口號的企業可以想想,過去你們真的能及時全面地了解客戶的需求與所想嗎?或許只有大數據時代這個問題的答案才會更明確。如果能在產品生產之前了解潛在用戶的主要特徵,以及他們對產品的期待,那麼你的產品一定投其所好。
2.數據分析是保證廣告與營銷信息的精準推送
過去多年精準廣告與營銷總在被許多公司提及,但是真正做到的少之又少,反而是垃圾信息泛濫。究其原因主要就是過去名義上的精準廣告與營銷並不怎麼精準,因為其缺少用戶特徵數據以及詳細准確的分析。而現在的RTB廣告等應用則向我們展示了比以前更好的精準性,而其背後靠的是大數據支撐。
3.數據分析才能實現對競爭對手的有效監測
競爭對手在干什麼是許多企業想了解的,即使對方不會告訴你,但你卻可以通過大數據監測分析得知。通過大數據分析找准方向,例如,可以進行傳播趨勢分析、內容特徵分析、互動用戶分析、正負情緒分類、口碑品類分析、產品屬性分布等,也可以通過監測掌握競爭對手傳播態勢。
4.數據分析可以監測品牌危機以及提供化解危機的支持
新媒體時代,品牌危機使許多企業談虎色變,然而大數據可以讓企業提前有所洞悉。在危機爆發過程中,最需要的是跟蹤危機傳播趨勢,識別重要參與人員,方便快速應對。通過大數據可以採集負面信息內容以便及時啟動危機跟蹤和報警,按照社群的社會屬性分析,聚類事件過程中的觀點,識別關鍵人物及傳播路徑,進而可以保護企業、產品的聲譽,即抓住源頭和關鍵節點,快速有效地處理品牌危機。
5.大數據分析可以有效地改善商品用戶體驗
改善商品用戶體驗,關鍵在於要真正了解用戶及他們所使用的你的產品的狀況與感受。例如,在大數據時代或許你正駕駛的汽車可提前救你一命,因為只要通過遍布全車的感測器收集車輛運行信息,就在你的汽車關鍵部件發生問題之前,會提前向你或4S店預警,這決不僅僅是節省幾個金錢,而且對保護生命大有裨益。

『玖』 大數據時代對商業活動有什麼影響

大數據(Big Data)是指無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。數據科學的技術權威舍恩伯格提出:「大數據不是隨機樣本,而是全體數據;不是精確性,而是混雜性;不是因果關系,而是相關關系。」大數據擁有數據體量巨大、數據類型繁多、價值密度低、處理速度快、真實性5個特徵。
大數據的價值在於,在不變的條件下,多次發生隨機事件的頻率近似於它概率,「有規律的隨機事件」在大量重復出現的條件下,往往呈現幾乎必然的統計特性。人們在擁有數據處理能力更龐大,互聯網數據獲取更容易的今天,通過新處理模式,可以將龐大的概率數據進行整理分析,從而發現事物基本規律來幫助自身進行決策、優化,形成海量、高增長率和多樣化的信息資產。
從大數定理(在試驗不變的條件下,重復試驗多次,隨機事件的頻率近似於它概率。「有規律的隨機事件」在大量重復出現的條件下,往往呈現幾乎必然的統計特性。)的角度來看,對於大數據分析非常有助於企業對於消費者消費行為的判斷和預測。拿零售業舉例,企業可以通過客戶購買記錄,了解一類客戶購買喜好和購買習慣從而將產品放到合理位置或者將相關產品放在一起增加來增加產品銷售額。
另一方面,數據的分析也有利於企業了解消費者個體行為與偏好數據,並精準地根據每一位消費者不同的興趣與偏好為他們提供專屬性的個性化產品和服務,從而促使更多的交易行為。