人工智慧方面的內容
㈠ 人工智慧的應用領域包括哪些
人工智慧主要應用領域
1、農業:農業中已經用到很多的AI技術,無人機噴撒農葯,除草,農作物狀態實時監控,物料采購,數據收集,灌溉,收獲,銷售等。通過應用人工智慧設備終端等,大大提高了農牧業的產量,大大減少了許多人工成本和時間成本。
2、通信:智能外呼系統,客戶數據處理(訂單管理系統),通信故障排除,病毒攔截(360等),騷擾信息攔截等
3、醫療:利用最先進的物聯網技術,實現患者與醫務人員、醫療機構、醫療設備之間的互動,逐步達到信息化。例:健康監測(智能穿戴設備)、自動提示用葯時間、服用禁忌、剩餘葯量等的智能服葯系統。
4、社會治安:安防監控(數據實時聯網,公安系統可以實時進行數據調查分析)、電信詐騙數據鎖定、犯罪分子抓捕、消防搶險領域(滅火、人員救助、特殊區域作業)等
5、交通領域:航線規劃、無人駕駛汽車、超速、行車不規范等行為整治
6、服務業:餐飲行業(點餐、傳菜,回收餐具,清洗)等,訂票系統(酒店、車票、機票等)的查詢、預定、修改、提醒等
7、金融行業:股票證券的大數據分析、行業走勢分析、投資風險預估等
8、大數據處理:天氣查詢,地圖導航,資料查詢,信息推廣(推薦引擎是基於用戶的行為、屬性(用戶瀏覽行為產生的數據),通過演算法分析和處理,主動發現用戶當前或潛在需求,並主動推送信息給用戶的瀏覽頁面。),個人助理
㈡ 學習人工智慧一般需要學習哪些內容
首先說一下人工智慧這一領域具體的內容:
人工智慧(Artificial Intelligence)是研究解釋和模擬人類智能、智能行為及其規律的一門學科。其主要任務是建立智能信息處理理論,進而設計可以展現某些近似於人類智能行為的計算系統。AI作為計算機科學的一個重要分支和計算機應用的一個廣闊的新領域,它同原子能技術,空間技術一起被稱為20世紀三大尖端科技。
人工智慧學科研究的主要內容包括:
知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
知識表示是人工智慧的基本問題之一,推理和搜索都與表示方法密切相關。常用的知識表示方法有:邏輯表示法、產生式表示法、語義網路表示法和框架表示法等。
常識,自然為人們所關注,已提出多種方法,如非單調推理、定性推理就是從不同角度來表達常識和處理常識的。
問題求解中的自動推理是知識的使用過程,由於有多種知識表示方法,相應地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎。結構化表示下的繼承性能推理是非演繹性的。由於知識處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機制推理、類比推理、基於示例的推理、反繹推理和受限推理等。
搜索是人工智慧的一種問題求解方法,搜索策略決定著問題求解的一個推理步驟中知識被使用的優先關系。可分為無信息導引的盲目搜索和利用經驗知識導引的啟發式搜索。啟發式知識常由啟發式函數來表示,啟發式知識利用得越充分,求解問題的搜索空間就越小。典型的啟發式搜索方法有A*、AO*演算法等。近幾年搜索方法研究開始注意那些具有百萬節點的超大規模的搜索問題。
機器學習是人工智慧的另一重要課題。機器學習是指在一定的知識表示意義下獲取新知識的過程,按照學習機制的不同,主要有歸納學習、分析學習、連接機制學習和遺傳學習等。
知識處理系統主要由知識庫和推理機組成。知識庫存儲系統所需要的知識,當知識量較大而又有多種表示方法時,知識的合理組織與管理是重要的。推理機在問題求解時,規定使用知識的基本方法和策略,推理過程中為記錄結果或通信需設資料庫或採用黑板機制。如果在知識庫中存儲的是某一領域(如醫療診斷)的專家知識,則這樣的知識系統稱為專家系統。為適應復雜問題的求解需要,單一的專家系統向多主體的分布式人工智慧系統發展,這時知識共享、主體間的協作、矛盾的出現和處理將是研究的關鍵問題。
綜上所述,我們需要學習的內容如下:
需要數學基礎:
高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。
需要演算法的積累:
人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。
需要掌握至少一門編程語言,畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。
㈢ 人工智慧技術主要包含哪些
人工智慧的發展歷史是和計算機科學技術的發展史聯系在一起的。除了計算機科學以外,人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
㈣ 人工智慧需要學習哪些東西
這是人工智慧的的復全部課製程,要是感興趣的話可以了解一下:
第一階段
前端開發 Front-end Development
1、桌面支持與系統管理(計算機操作基礎Windows7)
2、Office辦公自動化
3、WEB前端設計與布局
4、javaScript特效編程
5、Jquery應用開發
第二階段
核心編程 Core Programming
1、python核心編程
2、MySQL數據開發
3、Django 框架開發
4、Flask web框架
5、綜合項目應用開發
第三階段
爬蟲開發 Reptile Development
1、網路爬蟲開發
2、爬蟲項目實踐應用
3、機器學習演算法
4、Python人工智慧數據分析
5、python人工智慧高級開發
第四階段
人工智慧 PArtificial Intelligence
1、實訓一:WEB全棧開發
2、實訓二:人工智慧終極項目實戰
㈤ 人工智慧學什麼的呢
人工智慧雖然屬於一門高精尖學科,但它的研究對象是以計算機為主,融合社會科學和自然科學的內容。它的研究方向主要分為兩類:一類是以演算法為主,另一類則偏向機械自動化方向。
目前國內高校本科生階段的專業目錄中並沒有設置人工智慧專業,在研究生階段才開設相應的研究方向。但是本科階段有很多專業是與人工智慧相關的,比如計算機類、電子信息類、自動化類、數學類。
1、計算機類(0809-0812)
計算機科學與技術、軟體工程、網路工程、信息安全、物聯網工程、數字媒體技術、智能科學與技術、空間信息與數字技術、電子與計算機工程電子信息類:通信工程、信息工程、水聲工程、電子信息工程、廣播電視工程、醫學信息工程、微電子科學與工程、光電信息科學與工程、電子科學與技術、電磁場與無線技術、電子信息科學與技術、電波傳播與天線、電信工程及管理、應用電子技術教育、集成電路設計與集成系統
2、自動化類(080602)
自動化、軌道交通信號與控制
3、數學類(0701)
數學與應用數學、 信息與計算科學、 數理基礎科學、數據科學與大數據技術
備註:括弧內的是相關專業的學科代碼。
可以報考的學校有哪些?
目前國內有 3 所學校專門設立了人工智慧技術學院:
1、中國科學院大學人工智慧技術學院
2017 年 5 月,中國科學院大學成立國內首家成立人工智慧技術學院的高校,這是我國人工智慧技術領域首個全面開展教學和科研工作的新型學院。
中國科學院大學的人工智慧技術學院將由中科院自動化所擔任主承辦單位,聯合計算所、沈陽自動化所、軟體所、聲學所、深圳先進技術研究院、數學與系統科學研究院、重慶綠色智能技術研究院等為共同承擔單位,建立創新型人才培養與技術應用型人才培養互補,專業化培育與定製型培育結合的教育科研體系。
2、西安電子科技大學人工智慧學院
西安電子科技大學人工智慧學院於 2017 年 11 月揭牌成立。該學院系教育部直屬高校首個致力於人工智慧領域高端人才培養、創新成果研發和高層次團隊培育的實體性學院。
據介紹,在人才培養方面,西電新成立的人工智慧學院將以智能科學與技術等本科專業為主體進行培養,未來還將成立「圖靈實驗班」,探索人工智慧領域拔尖創新人才培養路徑。科學研究方面,依託學校「智能感知與計算國際聯合研究中心」、「智能感知與圖像理解實驗室」教育部重點實驗室、「智能感知與計算國際合作聯合實驗室」等研究平台,將面向復雜影像感知與人工智慧、類腦智能與深度學習、視頻感知與光電智能系統、數據科學與大數據關鍵技術、智能控制與機器人系統和高性能智能計算等開展科學研究。
㈥ 人工智慧的分類包括哪些
人工智慧的概念在很久以前就被提出來了,關於人工智慧,在網路上給出的定義是這樣的:人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
人工智慧我們大多數人都知道,但是關於人工智慧的分類,想必還是有很多人不太了解的。人工智慧有三種類型,分別是弱人工智慧、強人工智慧、超人工智慧。下邊我們就來分別介紹一下這三大類型。
弱人工智慧
弱人工智慧的英文是Artificial Narrow Intelligence,簡稱為ANI, 弱人工智慧是擅長於單個方面的人工智慧。
比如有能戰勝象棋世界冠軍的人工智慧阿爾法狗,但是它只會下象棋,如果我們問它其他的問題那麼它就不知道怎麼回答了。只有擅長單方面能力的人工智慧就是弱人工智慧。
強人工智慧
強人工智慧的英文是Artificial General Intelligence,簡稱AGI,這是一種類似於人類級別的人工智慧。強人工智慧是指在各方面都能和人類比肩的人工智慧,人類能乾的腦力活它都能幹。
創造強人工智慧比創造弱人工智慧難得多,我們現在還做不到。強人工智慧就是一種寬泛的心理能力,能夠進行思考、計劃、解決問題、抽象思維、理解復雜理念、快速學習和從經驗中學習等操作。強人工智慧在進行這些操作時應該和人類一樣得心應手。
超人工智慧
超人工智慧的英文是Artificial Superintelligence,簡稱ASI,科學家把超人工智慧定義為在幾乎所有領域都比最聰明的人類大腦都聰明很多,包括科學創新、通識和社交技能。
超人工智慧可以是各方面都比人類強一點,也可以是各方面都比人類強萬億倍的。超人工智慧也正是為什麼人工智慧這個話題這么火熱的緣故,同樣也是為什麼永生和滅絕這兩個詞總是出現在人們的口中。所以對於超人工智慧的發展還是需要我們好好把控的。
㈦ 人工智慧有哪幾方面
一個要求是智能,一個要求是人工;而我們現在所能做到的只是看起來智能即弱人工智慧,人工智慧的方向是使工具真的能「智能」,可以自我思考。
一切和看起來的智能有關系的都是人工智慧所研究的,其中包括MSN和QQ的聊天機器人。
那個留學的孩子說的不錯!不過不知道學的那個學校,要不就來寫全英的,要不就全部中文,像上面那樣寫智能,只能顯示自己菜得就會寫system,dataset,learning,planning,幾個單詞似的。
圖像智能識別(人眼),人型機器人(人體平衡),語音識別和發聲(人的語言系統)各方各面用處。
英國能用中文網路,速度快嗎?
㈧ 人工智慧涉及的領域有哪些
1、市場營銷
隨著AI的不斷發展,在不久的將來,網路上的消費者可能會通過拍張照片來購買產品。像CamFind這樣的公司及其競爭對手已經在嘗試這種方法。
2、銀行業
許多銀行已經採用基於AI系統來提供客戶支持並檢測異常情況和信用卡欺詐。HDFC銀行就是一個例子。使用AI預防欺詐並不是一個新概念。實際上,人工智慧解決方案可用於增強零售和金融等多個業務部門的安全性。
萬事達卡和RBS WorldPay等公司多年來一直依靠AI和深度學習來檢測欺詐幸福易模式並防止卡欺詐。這節省了數百萬美元。
3、金融業
風險投資一直依靠計算機和數據科學家來確定市場的未來模式。交易主要取決於准確預測未來的能力。
AI之所以出色,是因為它們可以在短時間內處理大量數據。AI還可以學習觀察過去數據中的模式,並預測這些模式將來可能會重復。在超高頻交易時代,金融機構正在轉向使用AI來改善其股票交易性能並提高利潤。
日本領先的經紀公司野村證券就是這樣的組織。該公司一直不情願追求一個目標,即藉助計算機來分析經驗豐富的股票交易員的見解。經過多年的研究,野村證券將推出一種新的股票交易系統。
新系統在其計算機中存儲了大量的價格和交易數據。通過利用此信息庫,它將進行評估。例如,它可以確定當前市場狀況與兩周前的狀況相似,並預測股價在幾分鍾內將如何變化。這將有助於根據預測的市場價格做出更好的交易決策。
4、農業
氣候變化,人口增長和糧食安全等問題促使該行業尋求更多創新方法來提高農作物產量。組織正在使用自動化和機器人技術來幫助農民找到更有效的方法來保護農作物免受雜草侵害。
Blue River技術公司開發了一種名為See&Spray的機器人,該機器人使用諸如對象檢測之類的計算機視覺技術來監控除草劑並將其精確噴灑到棉花上。精確噴霧可以幫助防止對除草劑的抵抗。
除此之外,位於柏林的農業科技初創企業PEAT開發了一個名為Plantix的應用程序,該應用程序可通過圖像識別土壤中潛在的缺陷和營養缺乏症。
圖像識別應用通過用戶的智能手機相機捕獲的圖像識別可能的缺陷。然後為用戶提供土壤修復技術,技巧和其他可能的解決方案。該公司聲稱其軟體可以實現模式檢測,估計精度高達95%。
5、醫療行業
在挽救生命方面,許多組織和醫療中心都依賴AI。醫療保健中的AI如何幫助世界各地的患者有很多例子。
一家名為Cambio Health Care的組織開發了用於預防中風的臨床決策支持系統,該系統可以在有患者患中暑的風險時向醫生發出警告。
另一個此類示例是Coala Life,該公司擁有可以查找心臟病的數字化設備。同樣,Aifloo正在開發一個系統來跟蹤人們在養老院,家庭護理等方面的表現。醫療保健中AI的最好之處在於,您甚至不需要開發新葯。通過正確使用現有葯物,您還可以挽救生命。