⑴ 暴君我來自軍情9處。秦之炎沒死為什麼不跟青夏在一起

因為他以後都不會死了,所以他不能跟青夏在一起,梁思還是秦二世。

⑵ 教育培訓機構常用招生途徑有哪些

教育行業在互聯網中的競爭度還是比較高的,隨著互聯網+教育普及,競爭度會越來越高,搜索競價的成本也會更高,想要在互聯網推廣教育類的網站或者項目,就需要選擇正確的推廣方法,建議以下幾種方法可以考慮:

教育機構招生技巧一:社交平台推廣

自媒體和短視頻是目前是非常流行的推廣方式,教育行業也是比較適合這種方式推廣的,因為,課程的內容是可以持續更新的,這樣就解決掉了內容原創的問題。

堅持做短視頻,分析其用戶喜好,改進課程的表達方式,也許會在短視頻領域分一部分流量。

總結:

教育行業想要單純通過網站獲取流量,難度是有的,但也是可以克服的;在做網站的同時,也要放眼其他的營銷方法,新穎的營銷方法,畢竟,人在哪裡,市場就在哪裡。

創業不易,祝君一切安好。

⑶ 軍事情報學就業方向

我有個同學大學學的情報學現在在總參,當然這是分配的好, 如果沒分好的話 估計就在山洞裡了。。。。。

⑷ 有什麼好看的軍事節目

呃······DiscoveryChannel--探索頻道 National Geographic國家地理頻道 或 北京大陸橋文化出品的《傳奇》的紀錄片 裡面有很多很多的是軍事系列的節目 其實CCTV-7軍事節目裡面的:《防務新觀察》 它比軍情觀察室要好看多 而且專家的理論觀點比較實際 還有《軍事科技》《百戰經典》 《軍情連連看》 都是很不錯呀~

⑸ 互聯網大數據現關心的是什麼

樓主您好:

首先,我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論
? 特徵定義
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
其實這些V並不能真正說清楚大數據的所有特徵,下面這張圖對大數據的一些相關特性做出了有效的說明。
36大數據
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
? 價值探討
大數據是什麼?投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。
如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
Target 超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確的推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對的在每個懷孕顧客的不同階段寄送相應的產品優惠卷。
Target的例子是一個很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個很有指導意義的觀點:通過找出一個關聯物並監控它,就可以預測未來。Target通過監測購買者購買商品的時間和品種來准確預測顧客的孕期,這就是對數據的二次利用的典型案例。如果,我們通過採集駕駛員手機的GPS數據,就可以分析出當前哪些道路正在堵車,並可以及時發佈道路交通提醒;通過採集汽車的GPS位置數據,就可以分析城市的哪些區域停車較多,這也代表該區域有著較為活躍的人群,這些分析數據適合賣給廣告投放商。
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
從大數據的價值鏈條來分析,存在三種模式:
1- 手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2- 沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3- 既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數據領域最具有價值的是兩種事物:1-擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2-還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
Wal-Mart作為零售行業的巨頭,他們的分析人員會對每個階段的銷售記錄進行了全面的分析,有一次他們無意中發現雖不相關但很有價值的數據,在美國的颶風來臨季節,超市的蛋撻和抵禦颶風物品竟然銷量都有大幅增加,於是他們做了一個明智決策,就是將蛋撻的銷售位置移到了颶風物品銷售區域旁邊,看起來是為了方便用戶挑選,但是沒有想到蛋撻的銷量因此又提高了很多。
還有一個有趣的例子,1948年遼沈戰役期間,司令員林彪要求每天要進行例常的「每日軍情匯報」,由值班參謀讀出下屬各個縱隊、師、團用電台報告的當日戰況和繳獲情況。那幾乎是重復著千篇一律枯燥無味的數據:每支部隊殲敵多少、俘虜多少;繳獲的火炮、車輛多少,槍支、物資多少……有一天,參謀照例匯報當日的戰況,林彪突然打斷他:「剛才念的在胡家窩棚那個戰斗的繳獲,你們聽到了嗎?」大家都很茫然,因為如此戰斗每天都有幾十起,不都是差不多一模一樣的枯燥數字嗎?林彪掃視一周,見無人回答,便接連問了三句:「為什麼那裡繳獲的短槍與長槍的比例比其它戰斗略高?」「為什麼那裡繳獲和擊毀的小車與大車的比例比其它戰斗略高?」「為什麼在那裡俘虜和擊斃的軍官與士兵的比例比其它戰斗略高?」林彪司令員大步走向掛滿軍用地圖的牆壁,指著地圖上的那個點說:「我猜想,不,我斷定!敵人的指揮所就在這里!」果然,部隊很快就抓住了敵方的指揮官廖耀湘,並取得這場重要戰役的勝利。
這些例子真實的反映在各行各業,探求數據價值取決於把握數據的人,關鍵是人的數據思維;與其說是大數據創造了價值,不如說是大數據思維觸發了新的價值增長。
? 現在和未來
我們先看看大數據在當下有怎樣的傑出表現:
大數據幫助政府實現市場經濟調控、公共衛生安全防範、災難預警、社會輿論監督;
大數據幫助城市預防犯罪,實現智慧交通,提升緊急應急能力;
大數據幫助醫療機構建立患者的疾病風險跟蹤機制,幫助醫葯企業提升葯品的臨床使用效果,幫助艾滋病研究機構為患者提供定製的葯物;
大數據幫助航空公司節省運營成本,幫助電信企業實現售後服務質量提升,幫助保險企業識別欺詐騙保行為,幫助快遞公司監測分析運輸車輛的故障險情以提前預警維修,幫助電力公司有效識別預警即將發生故障的設備;
大數據幫助電商公司向用戶推薦商品和服務,幫助旅遊網站為旅遊者提供心儀的旅遊路線,幫助二手市場的買賣雙方找到最合適的交易目標,幫助用戶找到最合適的商品購買時期、商家和最優惠價格;
大數據幫助企業提升營銷的針對性,降低物流和庫存的成本,減少投資的風險,以及幫助企業提升廣告投放精準度;
大數據幫助娛樂行業預測歌手,歌曲,電影,電視劇的受歡迎程度,並為投資者分析評估拍一部電影需要投入多少錢才最合適,否則就有可能收不回成本;
大數據幫助社交網站提供更准確的好友推薦,為用戶提供更精準的企業招聘信息,向用戶推薦可能喜歡的游戲以及適合購買的商品。
其實,這些還遠遠不夠,未來大數據的身影應該無處不在,就算無法准確預測大數據終會將人類社會帶往到哪種最終形態,但我相信只要發展腳步在繼續,因大數據而產生的變革浪潮將很快淹沒地球的每一個角落。
比如,Amazon的最終期望是:「最成功的書籍推薦應該只有一本書,就是用戶要買的下一本書。」
Google也希望當用戶在搜索時,最好的體驗是搜索結果只包含用戶所需要的內容,而這並不需要用戶給予Google太多的提示。
而當物聯網發展到達一定規模時,藉助條形碼、二維碼、RFID等能夠唯一標識產品,感測器、可穿戴設備、智能感知、視頻採集、增強現實等技術可實現實時的信息採集和分析,這些數據能夠支撐智慧城市,智慧交通,智慧能源,智慧醫療,智慧環保的理念需要,這些都所謂的智慧將是大數據的採集數據來源和服務范圍。
未來的大數據除了將更好的解決社會問題,商業營銷問題,科學技術問題,還有一個可預見的趨勢是以人為本的大數據方針。人才是地球的主宰,大部分的數據都與人類有關,要通過大數據解決人的問題。
比如,建立個人的數據中心,將每個人的日常生活習慣,身體體征,社會網路,知識能力,愛好性情,疾病嗜好,情緒波動……換言之就是記錄人從出生那一刻起的每一分每一秒,將除了思維外的一切都儲存下來,這些數據可以被充分的利用:
醫療機構將實時的監測用戶的身體健康狀況;
教育機構更有針對的制定用戶喜歡的教育培訓計劃;
服務行業為用戶提供即時健康的符合用戶生活習慣的食物和其它服務;
社交網路能為你提供合適的交友對象,並為志同道合的人群組織各種聚會活動;
政府能在用戶的心理健康出現問題時有效的干預,防範自殺,刑事案件的發生;
金融機構能幫助用戶進行有效的理財管理,為用戶的資金提供更有效的使用建議和規劃;
道路交通、汽車租賃及運輸行業可以為用戶提供更合適的出行線路和路途服務安排;
……
當然,上面的一切看起來都很美好,但是否是以犧牲了用戶的自由為前提呢?只能說當新鮮事物帶來了革新的同時也同樣帶來了「病菌」。比如,在手機未普及前,大家喜歡聚在一起聊天,自從手機普及後特別是有了互聯網,大家不用聚在一起也可以隨時隨地的聊天,只是「病菌」滋生了另外一種情形,大家慢慢習慣了和手機共渡時光,人與人之間情感交流彷彿永遠隔著一張「網」。
? 大數據隱私
你或許並不敏感,當你在不同的網站上注冊了個人信息後,可能這些信息已經被擴散出去了,當你莫名其妙的接到各種郵件,電話,簡訊的滋擾時,你不會想到自己的電話號碼,郵箱,生日,購買記錄,收入水平,家庭住址,親朋好友等私人信息早就被各種商業機構非法存儲或賤賣給其它任何有需要的企業或個人了。
更可怕的是,這些信息你永遠無法刪除,它們永遠存在於互聯網的某些你不知道的角落。除非你更換掉自己的所有信息,但是這代價太大了。
用戶隱私問題一直是大數據應用難以繞開的一個問題,如被央視曝光過的分眾無線、羅維鄧白氏以及網易郵箱都涉及侵犯用戶隱私。目前,中國並沒有專門的法律法規來界定用戶隱私,處理相關問題時多採用其他相關法規條例來解釋。但隨著民眾隱私意識的日益增強,合法合規地獲取數據、分析數據和應用數據,是進行大數據分析時必須遵循的原則。
說到隱私被侵犯,愛德華?斯諾登應該占據一席之地,這位前美國中央情報局(CIA)雇員一手引爆了美國「棱鏡計劃」(PRISM)的內幕消息。「棱鏡」項目是一項由美國國家安全局(NSA)自2007年起開始實施的絕密電子監聽計劃,年耗資近2000億美元,用於監聽全美電話通話記錄,據稱還可以使情報人員通過「後門」進入9家主要科技公司的伺服器,包括微軟、雅虎、谷歌、Facebook、PalTalk、美國在線、Skype、YouTube、蘋果。這個事件引發了人們對政府使用大數據時對公民隱私侵犯的擔心。
再看看我們身邊,當微博,微信,QQ空間這些社交平台肆意的吞噬著數億用戶的各種信息時,你就不要指望你還有隱私權了,就算你在某個地方刪除了,但也許這些信息已經被其他人轉載或保存了,更有可能已經被網路或Google存為快照,早就提供給任意用戶搜索了。
因此在大數據的背景下,很多人都在積極的抵制無底線的數字化,這種大數據和個體之間的博弈還會一直繼續下去……
專家給予了我們一些如何有效保護大數據背景下隱私權的建議:1-減少信息的數字化;2-隱私權立法;3-數字隱私權基礎設施(類似DRM數字版權管理);4-人類改變認知(接受忽略過去);5-創造良性的信息生態;6-語境化。
但是這些都很難立即見效或者有實質性的改善。
比如,現在有一種職業叫刪帖人,專門負責幫人到各大網站刪帖,刪除評論。其實這些人就是通過黑客技術侵入各大網站,破獲管理員的密碼然後進行手工定向刪除。只不過他們保護的不是客戶的隱私,而大多是丑聞。還有一種職業叫人肉專家,他們負責從互聯網上找到一個與他們根本就無關系用戶的任意信息。這是很可怕的事情,也就是說,如果有人想找到你,只需要兩個條件:1-你上過網,留下過痕跡;2-你的親朋好友或僅僅是認識你的人上過網,留下過你的痕跡。這兩個條件滿足其一,人肉專家就可以很輕松的找到你,可能還知道你現在正在某個餐廳和誰一起共進晚餐。
當很多互聯網企業意識到隱私對於用戶的重要性時,為了繼續得到用戶的信任,他們採取了很多辦法,比如google承諾僅保留用戶的搜索記錄9個月,瀏覽器廠商提供了無痕沖浪模式,社交網站拒絕公共搜索引擎的爬蟲進入,並將提供出去的數據全部採取匿名方式處理等。
在這種復雜的環境裡面,很多人依然沒有建立對於信息隱私的保護意識,讓自己一直處於被滋擾,被精心設計,被利用,被監視的處境中。可是,我們能做的幾乎微乎其微,因為個人隱私數據已經無法由我們自己掌控了,就像一首詩里說到的:「如果你現在繼續麻木,那就別指望這麻木能抵擋得住被」扒光」那一刻的驚恐和絕望……」
和大數據相關的技術
? 雲技術
大數據常和雲計算聯繫到一起,因為實時的大型數據集分析需要分布式處理框架來向數十、數百或甚至數萬的電腦分配工作。可以說,雲計算充當了工業革命時期的發動機的角色,而大數據則是電。
雲計算思想的起源是麥卡錫在上世紀60年代提出的:把計算能力作為一種像水和電一樣的公用事業提供給用戶。
如今,在Google、Amazon、Facebook等一批互聯網企業引領下,一種行之有效的模式出現了:雲計算提供基礎架構平台,大數據應用運行在這個平台上。
業內是這么形容兩者的關系:沒有大數據的信息積淀,則雲計算的計算能力再強大,也難以找到用武之地;沒有雲計算的處理能力,則大數據的信息積淀再豐富,也終究只是鏡花水月。
那麼大數據到底需要哪些雲計算技術呢?
這里暫且列舉一些,比如虛擬化技術,分布式處理技術,海量數據的存儲和管理技術,NoSQL、實時流數據處理、智能分析技術(類似模式識別以及自然語言理解)等。
雲計算和大數據之間的關系可以用下面的一張圖來說明,兩者之間結合後會產生如下效應:可以提供更多基於海量業務數據的創新型服務;通過雲計算技術的不斷發展降低大數據業務的創新成本。
36大數據
如果將雲計算與大數據進行一些比較,最明顯的區分在兩個方面:
第一,在概念上兩者有所不同,雲計算改變了IT,而大數據則改變了業務。然而大數據必須有雲作為基礎架構,才能得以順暢運營。
第二,大數據和雲計算的目標受眾不同,雲計算是CIO等關心的技術層,是一個進階的IT解決方案。而大數據是CEO關注的、是業務層的產品,而大數據的決策者是業務層。
詳情:http://ke..com/view/9424571.htm

⑹ 大數據只是互聯網嗎其它行業用不著嗎l

首先,我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論
? 特徵定義
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
其實這些V並不能真正說清楚大數據的所有特徵,下面這張圖對大數據的一些相關特性做出了有效的說明。
36大數據
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
? 價值探討
大數據是什麼?投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。
如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
Target 超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確的推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對的在每個懷孕顧客的不同階段寄送相應的產品優惠卷。
Target的例子是一個很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個很有指導意義的觀點:通過找出一個關聯物並監控它,就可以預測未來。Target通過監測購買者購買商品的時間和品種來准確預測顧客的孕期,這就是對數據的二次利用的典型案例。如果,我們通過採集駕駛員手機的GPS數據,就可以分析出當前哪些道路正在堵車,並可以及時發佈道路交通提醒;通過採集汽車的GPS位置數據,就可以分析城市的哪些區域停車較多,這也代表該區域有著較為活躍的人群,這些分析數據適合賣給廣告投放商。
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
從大數據的價值鏈條來分析,存在三種模式:
1- 手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2- 沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3- 既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數據領域最具有價值的是兩種事物:1-擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2-還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
Wal-Mart作為零售行業的巨頭,他們的分析人員會對每個階段的銷售記錄進行了全面的分析,有一次他們無意中發現雖不相關但很有價值的數據,在美國的颶風來臨季節,超市的蛋撻和抵禦颶風物品竟然銷量都有大幅增加,於是他們做了一個明智決策,就是將蛋撻的銷售位置移到了颶風物品銷售區域旁邊,看起來是為了方便用戶挑選,但是沒有想到蛋撻的銷量因此又提高了很多。
還有一個有趣的例子,1948年遼沈戰役期間,司令員林彪要求每天要進行例常的「每日軍情匯報」,由值班參謀讀出下屬各個縱隊、師、團用電台報告的當日戰況和繳獲情況。那幾乎是重復著千篇一律枯燥無味的數據:每支部隊殲敵多少、俘虜多少;繳獲的火炮、車輛多少,槍支、物資多少……有一天,參謀照例匯報當日的戰況,林彪突然打斷他:「剛才念的在胡家窩棚那個戰斗的繳獲,你們聽到了嗎?」大家都很茫然,因為如此戰斗每天都有幾十起,不都是差不多一模一樣的枯燥數字嗎?林彪掃視一周,見無人回答,便接連問了三句:「為什麼那裡繳獲的短槍與長槍的比例比其它戰斗略高?」「為什麼那裡繳獲和擊毀的小車與大車的比例比其它戰斗略高?」「為什麼在那裡俘虜和擊斃的軍官與士兵的比例比其它戰斗略高?」林彪司令員大步走向掛滿軍用地圖的牆壁,指著地圖上的那個點說:「我猜想,不,我斷定!敵人的指揮所就在這里!」果然,部隊很快就抓住了敵方的指揮官廖耀湘,並取得這場重要戰役的勝利。
這些例子真實的反映在各行各業,探求數據價值取決於把握數據的人,關鍵是人的數據思維;與其說是大數據創造了價值,不如說是大數據思維觸發了新的價值增長。
? 現在和未來
我們先看看大數據在當下有怎樣的傑出表現:
大數據幫助政府實現市場經濟調控、公共衛生安全防範、災難預警、社會輿論監督;
大數據幫助城市預防犯罪,實現智慧交通,提升緊急應急能力;
大數據幫助醫療機構建立患者的疾病風險跟蹤機制,幫助醫葯企業提升葯品的臨床使用效果,幫助艾滋病研究機構為患者提供定製的葯物;
大數據幫助航空公司節省運營成本,幫助電信企業實現售後服務質量提升,幫助保險企業識別欺詐騙保行為,幫助快遞公司監測分析運輸車輛的故障險情以提前預警維修,幫助電力公司有效識別預警即將發生故障的設備;
大數據幫助電商公司向用戶推薦商品和服務,幫助旅遊網站為旅遊者提供心儀的旅遊路線,幫助二手市場的買賣雙方找到最合適的交易目標,幫助用戶找到最合適的商品購買時期、商家和最優惠價格;
大數據幫助企業提升營銷的針對性,降低物流和庫存的成本,減少投資的風險,以及幫助企業提升廣告投放精準度;
大數據幫助娛樂行業預測歌手,歌曲,電影,電視劇的受歡迎程度,並為投資者分析評估拍一部電影需要投入多少錢才最合適,否則就有可能收不回成本;
大數據幫助社交網站提供更准確的好友推薦,為用戶提供更精準的企業招聘信息,向用戶推薦可能喜歡的游戲以及適合購買的商品。
其實,這些還遠遠不夠,未來大數據的身影應該無處不在,就算無法准確預測大數據終會將人類社會帶往到哪種最終形態,但我相信只要發展腳步在繼續,因大數據而產生的變革浪潮將很快淹沒地球的每一個角落。
比如,Amazon的最終期望是:「最成功的書籍推薦應該只有一本書,就是用戶要買的下一本書。」
Google也希望當用戶在搜索時,最好的體驗是搜索結果只包含用戶所需要的內容,而這並不需要用戶給予Google太多的提示。
而當物聯網發展到達一定規模時,藉助條形碼、二維碼、RFID等能夠唯一標識產品,感測器、可穿戴設備、智能感知、視頻採集、增強現實等技術可實現實時的信息採集和分析,這些數據能夠支撐智慧城市,智慧交通,智慧能源,智慧醫療,智慧環保的理念需要,這些都所謂的智慧將是大數據的採集數據來源和服務范圍。
未來的大數據除了將更好的解決社會問題,商業營銷問題,科學技術問題,還有一個可預見的趨勢是以人為本的大數據方針。人才是地球的主宰,大部分的數據都與人類有關,要通過大數據解決人的問題。
比如,建立個人的數據中心,將每個人的日常生活習慣,身體體征,社會網路,知識能力,愛好性情,疾病嗜好,情緒波動……換言之就是記錄人從出生那一刻起的每一分每一秒,將除了思維外的一切都儲存下來,這些數據可以被充分的利用:
醫療機構將實時的監測用戶的身體健康狀況;
教育機構更有針對的制定用戶喜歡的教育培訓計劃;
服務行業為用戶提供即時健康的符合用戶生活習慣的食物和其它服務;
社交網路能為你提供合適的交友對象,並為志同道合的人群組織各種聚會活動;
政府能在用戶的心理健康出現問題時有效的干預,防範自殺,刑事案件的發生;
金融機構能幫助用戶進行有效的理財管理,為用戶的資金提供更有效的使用建議和規劃;
道路交通、汽車租賃及運輸行業可以為用戶提供更合適的出行線路和路途服務安排;
……
當然,上面的一切看起來都很美好,但是否是以犧牲了用戶的自由為前提呢?只能說當新鮮事物帶來了革新的同時也同樣帶來了「病菌」。比如,在手機未普及前,大家喜歡聚在一起聊天,自從手機普及後特別是有了互聯網,大家不用聚在一起也可以隨時隨地的聊天,只是「病菌」滋生了另外一種情形,大家慢慢習慣了和手機共渡時光,人與人之間情感交流彷彿永遠隔著一張「網」。
? 大數據隱私
你或許並不敏感,當你在不同的網站上注冊了個人信息後,可能這些信息已經被擴散出去了,當你莫名其妙的接到各種郵件,電話,簡訊的滋擾時,你不會想到自己的電話號碼,郵箱,生日,購買記錄,收入水平,家庭住址,親朋好友等私人信息早就被各種商業機構非法存儲或賤賣給其它任何有需要的企業或個人了。
更可怕的是,這些信息你永遠無法刪除,它們永遠存在於互聯網的某些你不知道的角落。除非你更換掉自己的所有信息,但是這代價太大了。
用戶隱私問題一直是大數據應用難以繞開的一個問題,如被央視曝光過的分眾無線、羅維鄧白氏以及網易郵箱都涉及侵犯用戶隱私。目前,中國並沒有專門的法律法規來界定用戶隱私,處理相關問題時多採用其他相關法規條例來解釋。但隨著民眾隱私意識的日益增強,合法合規地獲取數據、分析數據和應用數據,是進行大數據分析時必須遵循的原則。
說到隱私被侵犯,愛德華?斯諾登應該占據一席之地,這位前美國中央情報局(CIA)雇員一手引爆了美國「棱鏡計劃」(PRISM)的內幕消息。「棱鏡」項目是一項由美國國家安全局(NSA)自2007年起開始實施的絕密電子監聽計劃,年耗資近2000億美元,用於監聽全美電話通話記錄,據稱還可以使情報人員通過「後門」進入9家主要科技公司的伺服器,包括微軟、雅虎、谷歌、Facebook、PalTalk、美國在線、Skype、YouTube、蘋果。這個事件引發了人們對政府使用大數據時對公民隱私侵犯的擔心。
再看看我們身邊,當微博,微信,QQ空間這些社交平台肆意的吞噬著數億用戶的各種信息時,你就不要指望你還有隱私權了,就算你在某個地方刪除了,但也許這些信息已經被其他人轉載或保存了,更有可能已經被網路或Google存為快照,早就提供給任意用戶搜索了。
因此在大數據的背景下,很多人都在積極的抵制無底線的數字化,這種大數據和個體之間的博弈還會一直繼續下去……
專家給予了我們一些如何有效保護大數據背景下隱私權的建議:1-減少信息的數字化;2-隱私權立法;3-數字隱私權基礎設施(類似DRM數字版權管理);4-人類改變認知(接受忽略過去);5-創造良性的信息生態;6-語境化。
但是這些都很難立即見效或者有實質性的改善。
比如,現在有一種職業叫刪帖人,專門負責幫人到各大網站刪帖,刪除評論。其實這些人就是通過黑客技術侵入各大網站,破獲管理員的密碼然後進行手工定向刪除。只不過他們保護的不是客戶的隱私,而大多是丑聞。還有一種職業叫人肉專家,他們負責從互聯網上找到一個與他們根本就無關系用戶的任意信息。這是很可怕的事情,也就是說,如果有人想找到你,只需要兩個條件:1-你上過網,留下過痕跡;2-你的親朋好友或僅僅是認識你的人上過網,留下過你的痕跡。這兩個條件滿足其一,人肉專家就可以很輕松的找到你,可能還知道你現在正在某個餐廳和誰一起共進晚餐。
當很多互聯網企業意識到隱私對於用戶的重要性時,為了繼續得到用戶的信任,他們採取了很多辦法,比如google承諾僅保留用戶的搜索記錄9個月,瀏覽器廠商提供了無痕沖浪模式,社交網站拒絕公共搜索引擎的爬蟲進入,並將提供出去的數據全部採取匿名方式處理等。
在這種復雜的環境裡面,很多人依然沒有建立對於信息隱私的保護意識,讓自己一直處於被滋擾,被精心設計,被利用,被監視的處境中。可是,我們能做的幾乎微乎其微,因為個人隱私數據已經無法由我們自己掌控了,就像一首詩里說到的:「如果你現在繼續麻木,那就別指望這麻木能抵擋得住被」扒光」那一刻的驚恐和絕望……」
和大數據相關的技術
? 雲技術
大數據常和雲計算聯繫到一起,因為實時的大型數據集分析需要分布式處理框架來向數十、數百或甚至數萬的電腦分配工作。可以說,雲計算充當了工業革命時期的發動機的角色,而大數據則是電。
雲計算思想的起源是麥卡錫在上世紀60年代提出的:把計算能力作為一種像水和電一樣的公用事業提供給用戶。
如今,在Google、Amazon、Facebook等一批互聯網企業引領下,一種行之有效的模式出現了:雲計算提供基礎架構平台,大數據應用運行在這個平台上。
業內是這么形容兩者的關系:沒有大數據的信息積淀,則雲計算的計算能力再強大,也難以找到用武之地;沒有雲計算的處理能力,則大數據的信息積淀再豐富,也終究只是鏡花水月。
那麼大數據到底需要哪些雲計算技術呢?
這里暫且列舉一些,比如虛擬化技術,分布式處理技術,海量數據的存儲和管理技術,NoSQL、實時流數據處理、智能分析技術(類似模式識別以及自然語言理解)等。
雲計算和大數據之間的關系可以用下面的一張圖來說明,兩者之間結合後會產生如下效應:可以提供更多基於海量業務數據的創新型服務;通過雲計算技術的不斷發展降低大數據業務的創新成本。
36大數據
如果將雲計算與大數據進行一些比較,最明顯的區分在兩個方面:
第一,在概念上兩者有所不同,雲計算改變了IT,而大數據則改變了業務。然而大數據必須有雲作為基礎架構,才能得以順暢運營。
第二,大數據和雲計算的目標受眾不同,雲計算是CIO等關心的技術層,是一個進階的IT解決方案。而大數據是CEO關注的、是業務層的產品,而大數據的決策者是業務層。
詳情:http://ke..com/view/9424571.htm

⑺ 大數據在軍事領域有哪些應用

在軍事上,用小數據時代的理念和技術,很難與大數據時代的思維和技能相對抗。面對大數據時代的軍事機遇和挑戰,要麼主動進擊,要麼被動跟進,難以置之度 外。其間的取捨與成敗,首先有賴於思維變革,其要求全體軍事人員尤其是指揮員,更加具備基於體系作戰的系統思維、基於數據模型的精確思維及基於對戰爭進行 科學預設的前瞻思維。
大數據創新了軍事管理方法,且這種創新是全方位的--除了可以提高包含閱兵在內的軍事訓練水平,還可以:
1.提高軍事管理水平
管理大師戴明與德魯克都曾提出:「不會量化就無法管理」。數據的根本價值之一,就是可作為管理依據。大數據應用的特點是強調分析與某事物相關的總體數據, 而不是抽取少量的數據樣本;大數據關注事物的混雜性,而不追求事物的精確性;大數據注重事物的相關關系,而不探求其間的因果關系。
將大數據應用於軍事領域,意味著軍事管理將更加剛性,基本不受人為因素的影響,且更加自動化。所以說,大數據強軍的內涵,本質上是軍事管理科學化程度的提 高,即與小數據比起來,由於有了大數據,軍事管理活動量化程度更高了,工具更加先進了,邊界更加寬廣了,管理質量、效率會隨之更高。
2.豐富軍事科研方法
通常人們研究戰爭機理、找尋戰爭規律的方法有三種,又稱為三大範式:實驗科學範式,在戰前通過反復的實兵對抗演習來論證和改進作戰方案;理論科學範式,採用數學公式描述交戰的過程,如經典的蘭徹斯特方程;計算科學範式,基於計算機開發出模擬系統來模擬不同作戰單元之間的交戰場景。
但是,上述研究範式只能使人們感知交戰的過程和結果,並未有效提高對海量數據的管理、存儲和分析能力。
以大數據為核心技術的數據挖掘模式被稱為第四戰爭研究範式。人 們可以有效利用大數據,探尋信息化戰爭的內在規律,而不是被淹沒在海量數據中一籌莫展。大數據研究範式由軟體處理各種感測器或模擬實驗產生的大量數據,將 得到的信息或知識存儲在計算機中,基於數據而非已有規則編寫程序,再利用包括量子計算機在內的各種高性能計算機對海量信息進行挖掘,由計算機智能化尋找隱 藏在數據中的關聯,從而發現未知規律,捕獲有價值的情報信息。
例如,在第一次海灣戰爭前,美軍就利用改進的「兵棋」,對戰爭進程、結果及傷亡人數進行了推演,推演結果與戰爭的實際結果基本一致。而在伊拉克戰爭前,美 軍利用計算機兵棋系統進行演習,推演「打擊伊拉克」作戰預案。隨後美軍現實中進攻伊拉克並取得勝利的行動,也和兵棋推演的結果幾乎完全一致。
作戰模擬早已經從人工模式轉變為計算機模式,再加上大數據,戰前的模擬推演,從武器使用、戰爭打法到指揮手段,都可以清晰地顯現,是非常好的戰時決策依據。一旦發現作戰計劃有問題,可以及時調整,以確保實戰傷亡最小並取得勝利。
3.加速型武器裝備面世
大數據在武器裝備上的廣泛應用,意味著武器裝備建設將從重視研發信息系統到重視數據處理與應用的轉變,從注重信息系統的互聯互通到注重信息系統的透明性互 操作的轉變。當前武器裝備的信息化程度越來越高,裝備體系內各個節點之間的信息共享也越來越方便、可靠,但由此也帶來了一些突出問題,如原始信息規模過 大、價值不夠高、直接提取所需信息的難度增加等,從而使得武器裝備體系在信息獲取效率上大打折扣。在這種背景下產生的大數據為解決上述問題提供了有效方 法。
需要說明的是:大數據應用不僅意味著人們要以創新方式使用海量數據,還意味著人們要採用人工智慧技術來處理自然文本和進行知識表述,以替代目前依賴專家和技術人員昂貴而又耗時的信息處理方式。
大數據與人工智慧是一而二、二而一的關系。受益於大數據技術,武器裝備體系將從戰場上的信息使用者升級為高度智能化和自主化的系統。其具體流程為:經 過智能處理後的高價值信息進入戰場網路鏈路後,與戰場網路融為一體的武器裝備體系能實時自動感知面臨的有關威脅,各裝備節點自動感知包括我情和敵情在內的 戰場態勢,在作戰人員的有限參與下高度自主地分解作戰任務,確定作戰目標和行動方案,經過適當的審批流程後執行相關的作戰行動。
在這方面走在前列的仍然是美軍。美軍大數據研究的第一個重要目標是通過大數據創建真正能自主決策、自主行動的無人系統。這一點已在無人機領域實現。美軍希 望無人機可以完全擺脫人的控制而實現自主行動。美軍2013年試飛的X-47B就是這一系統的代表,它已經可以在完全無人干預的情況下自動在航母上完成起 降並執行作戰任務。
4.提升情報分析能力
19世紀初,軍事戰略家克勞塞維茨以人的認知局限為由,提出了「戰爭迷霧」概念。顯然,「戰爭迷霧」即「數據迷霧」。信息戰首先得消除「戰爭迷霧」。信息 戰是體系對體系的戰爭,而這一體系是一個超級復雜的巨大系統,僅諸軍兵種龐雜的武器裝備和作戰環境數據,就足以大到使普通的信息處理能力捉襟見肘;而敵我 對抗的復雜化,更是讓數據量呈爆炸式增長,從而帶來比傳統戰爭更多的「數據迷霧」。可以說,信息化戰爭的機制深藏在「數據迷霧」中。
消除「戰爭迷霧」會提高指揮員的情報分析與軍情預測能力。過去,由於可以掌握的數據不足,戰爭的不確定性很高,指揮員很容易陷在「戰爭迷霧」之中。而大數據最重要的價值之一是預測,即把數據演算法運用到海量的數據上來預測事情發生的可能性。
具體而言,未來完全可能依託大數據分析處理技術和建構模型,通過數據挖掘模式,從海量數據中挖掘出有價值的信息,及時准確掌握敵方的戰略企圖、作戰規律和 兵力配置,真正做到「知己知彼」,使戰場變得清晰透明,從而撥開「戰爭迷霧」,達成運籌於帷幄之中、決勝於千里之外的作戰目的。
對此趨勢,很多國家及其軍隊都極為看重。例如,美軍明確提出,要通過大數據將其情報分析能力提高100倍以上。如果這一目標實現,那麼在這一領域其他國家 與美軍的差距,將難以用簡單的「代差」來描述。美軍通過多年的發展,已擁有全球最先進的情報偵察系統,因為對海量情報數據的分析,曾是美軍情報偵察能力的 瓶頸,而大數據正好能夠幫助美軍突破這一瓶頸。
大數據時代,往往不要求准確知道每一個精確的細節,只需了解事物的概略全貌即可。通過相關數據信息的大量積累,而不是對某個具體數據的精確分析,大數據技 術可以為我們提煉出事物運行的規律,並判斷其發展趨勢。例如,2011年美軍擊斃本·拉登的「海神之矛」行動,就有賴上千名數據分析員長達10年數據積累 的支撐。換言之,是大數據抓住了本·拉登。
5.引領指揮決策方式變革
管理的核心是決策。大數據帶來的重要變革之一,是決策的思維、模式和方法的變革。建立在小數據時代基於經驗的決策,將讓位於大數據時代基於全樣本數據的決策。
決策是進行數據分析、行動方案設計並最終選擇行動方案的過程。軍事決策建立在對敵情的正確分析預測之上,其目的是通過合理分配兵力兵器,優選打擊目標,設計完成任務的最佳行動方法與步驟。
以往的戰爭,做出作戰決策時缺少足夠數據支持,甚至數據本身的真實性、准確性也難以保證。目前信息化條件下的戰爭,各種條件都變成了數據,這就要求指揮人 員必須掌握分析海量數據的工具和能力。以往,指揮人員更多的是依靠經驗進行相對概略或粗放式決策。大數據的出現必將要求指揮人員以全新的數據思維來進行指 揮決策。這種決策將有幾個特點:
一是准確。只要提供的數據量足夠龐大真實,通過數據挖掘模式,就可以較為准確地把握敵方指揮員的思維規律,預測對手的作戰行動,掌控戰場態勢的發展變化等。
二是迅速。大數據相關技術所提供的高速計算能力有助於指揮員更加迅速地設計行動方案。
三是自動化。針對特定的作戰對手和作戰環境,大數據系統可以自動對己方成千上萬、功能互補的作戰單 元或平台進行模塊化編組,從而實現整體作戰能力的最優化;面對眾多性質不同、防護力不同且威脅度各異的打擊目標,大數據系統可以自動對有限數量、有限強度 和有限精度的火力進行分配,以收獲最大作戰效益。
在大數據時代的戰爭中,軍事專家、技術專家的光芒會因為統計學家、數據分析家的參與而變暗,因為後者不受舊觀念的影響,能夠聆聽數據發出的「聲音」。
總之,基於數據的定量決策將和基於經驗的定性決策同樣重要,基於經驗的決策將很大程度上讓位給全樣本決策,基於大數據的決策手段將從輔助決策的次要地位上升到支撐決策的重要地位。
對此,美軍的認識是最到位的。美軍發布的《2013-2017年國防部科學技術投資優先項目》就將「從數據到決策」項目排在了第一位,凸顯了大數據對其指揮決策方式的巨大影響。
6.優化作戰指揮流程
網路日益普及的情況下,信息的流通與共享已不是難題,人們開始關注對信息的認識,及將信息轉化為知識的能力。
與之相適應,軍事信息技術也從關注「T」(Technology)的階段,向關注「I」(Information)的階段轉變;從建設指揮自動化系統 (C4ISR),即指揮、控制、通信、計算機、情報及監視與偵察等信息系統,整體管理「戰場信息的獲取、傳遞、處理和分發」的全信息流程;發展至重視大數 據處理應用,綜合集成數據採集、處理平台和分析系統,統一優化管理「戰場數據採集、傳遞、分析和應用」的全數據流程。即通過對海量數據進行開發處理,大幅 度提高從中提取高價值情報的能力,從而實現對戰場綜合態勢的實時感知、同步認知,進一步壓縮「包以德循環」(OODA Loop),即觀察-調整-決策-行動的指揮周期,縮短「知謀定行」時間,提高快速反應能力。
隨著數據挖掘技術、大規模並行演算法及人工智慧技術的不斷完善並廣泛應用在軍事上,情報、決策與作戰一體化將取得快速進展。在武器裝備上,將特別注重各作戰 平台的系統融合和無縫鏈接,以保證戰場信息的實時快速流轉,縮短從「感測器到射手」的時間差,實現「發現即摧毀」的作戰目標。
比如近幾年迅速發展的無人機作戰平台,其本質就是一個智能系統。其可以成建制地對實時捕獲的重要目標進行「發現即摧毀」式的精確打擊,還能通過融合情報的 前端和後端,使數據流程與作戰流程無縫鏈接並相互驅動,構建全方位遂行聯合作戰的「偵打一體」體系,從而實現了體系化的「從感測器到射手」的重大突破。
7.推動戰爭形態的演變
大數據可以改變未來的戰爭形態。美軍一直追求從感測器到平台的實時打擊能力,追求零傷亡。
由大數據支撐的擁有自主能力的無人作戰平台,將使得這些追求成為可能。例如,目前全世界最先進的無人偵察機「全球鷹」,能連續監視運動目標,准確識別地面 的各種飛機、導彈和車輛的類型,甚至能清晰分辨出汽車輪胎的類型。現今,美空軍的無人機數量已經超過了有人駕駛的飛機,或許不久的將來,美軍將向以自主無 人系統為主的,對網路依賴度逐漸降低的「數據中心戰」邁進。
無人機能否做到實時地對圖像進行傳輸非常關鍵。
目前,美國正使用新一代極高頻的通訊衛星作為大數據平台的支撐。未來,無人機甚至有可能擺脫人的控制實現完全的自主行動。美軍試驗型無人戰斗機X-47B就是這一趨勢的代表,它已經可以在完全無人干預的情況下,自動在航母上完成起降並執行作戰任務。
總之,基於大數據的實時、無人化作戰,將徹底改變人類幾千年來以有生力量為主的戰爭形態。
8.引導軍事組織形式變革
大數據即大融合,它有望打破軍種之間的壁壘,解決軍隊跨軍種、跨部門協作的問題,真正實現一體化作戰。
就組織形態而言,扁平結構、層次簡捷、高度集成、體系融合應該更符合大數據時代的要求。軍事方面的相關趨勢有:
(1)網狀化。軍隊的指揮體系逐步發展為「指揮網」,原先的「樹狀結構」變為 「網狀結構」。一個師的指揮系統一旦被打垮,師以下各級可通過「網」與上級或其他作戰單元聯系。這就改變了傳統軍事指揮體系由「樹干、樹枝、樹葉」編成的 組織形態,避免了機械化戰爭時期「打斷一枝、癱瘓一片」的指揮弊端,有效提高了局部戰爭中的指揮效能。
(2)小型化。發達國家的陸軍多由軍、師、團、營體制向軍、旅、營制轉變,使作戰集團更加輕便靈活,機動性更強。 根據部隊的不同功能優化組合,基本作戰單位不需要加強補充就能實施多種作戰,從而全面提高應對多種安全威脅,完成多樣化軍事任務的能力。將營作為基本戰術 「模塊」,將旅作為基本合成單位,以搭積木方式進行編組,戰時根據需要臨時編組,看迅速生成擔負不同作戰任務的部隊。
世界各主要國家都非常重視軍隊組織形態變革,並致力於發展新興軍兵種,及時設計和建設新型部隊。
2009年,美國國防部宣布組建網路戰司令部。2013年3月,美國網路戰司令部司令亞力山大宣布,美國將增加40支網路戰部隊。美國、俄羅斯等國都在積極籌劃或正在建設能在太空進行作戰的「天軍」部隊、「機器人」部隊。
隨著新興軍兵種的建立,軍隊的組織形態將出現新面貌,未來戰爭的觸角不斷延伸,網路、電磁頻譜領域的爭奪方興未艾,太空不再是寂寞世界,天戰也不再遙遠。
(3)一體化。軍隊信息化必然要求一體化,信息化程度越高,一體化特徵越明顯。適應新形勢下強軍目標的要求,我軍必須對戰鬥力要素進行一體化整合,推進武裝力量一體化、軍隊編成一體化、指揮控制一體化、作戰要素一體化,提高整體效益。
9.大數據將使體系作戰能力大幅提升
從作戰手段角度看,大數據及其支撐的新型武器裝備的應用,將豐富軍隊的作戰體系;從作戰效能角度看,大數據下的作戰行動循環(包以德循環)所耗時間將大為縮短,更符合「未來戰爭不是大吃小,而是快吃慢」的制勝規律。相關變革的結果,將是軍隊體系作戰能力大幅提升。
10.提升軍隊的信息化建設水平
大數據給了各國軍隊(尤其是像我軍這樣的信息化發展水平參差不齊的軍隊)一個契機,可以牽引、拉動自身的信息化建設向更高層次發展,同時拉齊整體水平,因為大數據意味著「整體」。
具體來說,應以提高決策速度、反應速度和聯合作戰能力為目標,以數據為中心,以搜索分析處理數據為中樞架構,自上而下建設軍事「數據網路」;加快組建雲計 算中心,把對大數據分析處理作為軍事信息化建設的重中之重,努力建構精確分析處理大數據的硬體系統、軟體模型,實現大數據「從數據轉化為決策」的智能化和 瞬時化。
同時,也要抓好末端的單兵及單件武器裝備的數據採集、存儲設備設計,從而為海量數據的挖掘和整合奠定基

⑻ 漫天皆白,雪裡行軍情更迫 更喜岷山千里雪,三軍過後盡開顏 表達了毛澤東怎樣的思想感情

更喜岷山千里雪,三軍過後盡開顏 表達了毛澤東對於勝利在望的喜悅之情。

該句出自毛澤東的《七律·長征》。

《七律·長征》

毛澤東

原文:

紅軍不怕遠征難,萬水千山只等閑。

五嶺逶迤騰細浪,烏蒙磅礴走泥丸。

金沙水拍雲崖暖,大渡橋橫鐵索寒。

更喜岷山千里雪,三軍過後盡開顏。

譯文:

紅軍不怕萬里長征路上的一切艱難困苦,把千山萬水都看得極為平常。綿延不斷的五嶺,在紅軍看來只不過是微波細浪在起伏,而氣勢雄偉的烏蒙山,在紅軍眼裡也不過是一顆泥丸。

金沙江濁浪滔天,拍擊著高聳入雲的峭壁懸崖,熱氣騰騰。大渡河險橋橫架,晃動著凌空高懸的根根鐵索,寒意陣陣。更加令人喜悅的是踏上千里積雪的岷山,紅軍翻越過去以後個個笑逐顏開。

(8)軍情大數據擴展閱讀

《七律·長征》創作背景:

1934年10月,中國工農紅軍為粉碎國民政府的圍剿,保存自己的實力,也為了北上抗日,挽救民族危亡,從江西瑞金出發,開始了舉世聞名的長征。

這首七律是作於紅軍戰士越過岷山後,長征即將勝利結束前不久的途中。作為紅軍的領導人,毛澤東在經受了無數次考驗後,如今,曙光在前,勝利在望,他心潮澎湃,滿懷激情地寫下了這首壯麗的詩篇。《七律·長征》寫於1935年9月下旬,10月定稿。

《七律·長征》作者簡介:

毛澤東(1893年12月26日-1976年9月9日),字潤之(原作詠芝,後改潤芝),筆名子任。湖南湘潭人。毛澤東同志是偉大的馬克思主義者,偉大的無產階級革命家、戰略家、理論家。

馬克思主義中國化的偉大開拓者,是近代以來中國偉大的愛國者和民族英雄,是黨的第一代中央領導集體的核心,是領導中國人民徹底改變自己命運和國家面貌的一代偉人。

他對馬克思列寧主義的發展、軍事理論的貢獻以及對共產黨的理論貢獻被稱為毛澤東思想。被人們尊稱為「毛大大」。毛澤東被視為現代世界歷史中最重要的人物之一,《時代》雜志也將他評為20世紀最具影響100人之一。