大數據在配網
Ⅰ 大數據給我們生活帶來啥
大數據對企業的幫助
1.幫企業進行消費者的需求分析
現在的消費者不再是營銷產品的被動接收器。通過大數據幫助企業找准消費者的需求點設計產品,刺激消費。
2.幫企業挖掘鎖定客戶資源
通過大數據技術,可以實現企業的客戶資源進行精準的鎖定,形成可視化圖片展示,有利於企業產品的營銷推廣的區域性。
3.幫企業危機預警
當代社會,輿情危機的爆發和擴散。企業潛在的質量問題、安全問題、經濟問題、市場問題等在一定條件下一旦爆發;危機效應將瞬間傳遞開來,對企業的商譽和品牌造成極大的傷害,而大數據可以幫助企業進行輿情監控防止給企業造成巨大的損失。
大數據對政府城市管理的幫助
1.大數據應用於城市規劃
城市的不斷發展催生了不同的功能區域,如文教、商業和住宅區等。准確掌握這些區域的分布對制定合理的城市規劃有著極其重要的意義。由於一個區域的功能並不是單一的,如在科學文教區里仍然有飯店和商業設施的存在,一個區域需要由一個功能的分布來表達(如70%的功能為商業,20%的功能為住宅,剩餘的為教育)。另一方面,一個區域的主要功能是文教,但也不代表該區域的任何一個地點都服務於文教。因此,給定一種功能,我們希望知道它的核心區域所在。
以北京市通州和順義的職住比(職業人數與居住人數比)來舉例:作為北京著名的「睡城」,通州給人的印象往往是「遍地樓盤」「上班族天天候鳥式往返」;而順義區依託首都機場周邊的工業區,帶來大量就業機會,看起來似乎通州的職住比要遠低於順義。然而,數據卻顯示,兩個地方的職住比幾乎持平。因此,有了大數據,規劃者和決策者可以避免很多「印象流」的誤區。
2.大數據應用於城市應急管理
大數據在應急管理中的應用方式分為兩部分:大數據技術和大數據思維。大數據技術既包括諸如數據倉庫、數據集市和數據可視化等舊技術,也包括雲存儲和雲計算等新技術;而大數據思維則是從海量數據中發現問題,用全樣本的思維來思考問題,形成了模糊化、相關性和整體化的考慮方式。大數據技術與思維相互融合和作用,共同形成了大數據的應用,並對包括應急管理在內的很多公共管理領域產生了巨大影響。
以疾病預防為例:大數據的使用可以將用戶的每日數據輸入到醫療數據系統,通過對匹配病原情況的數據篩查,可以准確的找到感染群體、規模、特徵,同時可以快速調去處置方法,達到應急管理的重要目標。
3.大數據應用於城市環境保護
大數據分析最重要的應用領域之一就是預測性分析,從大數據中挖掘出獨有特點,通過建立評估和預測預報模型,預測未來發展趨勢;而大數據的虛擬化特徵,還將大大降低環境管理風險,能夠在管理調整尚未展開之前就給出相關答案,讓管理措施做到有的放矢。
以管理污染源企業為例:通過大數據技術,可以實現污染源企業的精準鎖定。在污染源的生命周期過程中,每個節點所需要的每一類數據,都可以進行搜集分析,形成基於污染源管理的數據資源分布可視圖。就如同「電子地圖」一般,將原先只是虛擬存在的各種點,進行「點對點」的數據化、圖像化展現,使得環保部門的管理者可以更直觀地面對污染源企業。
4.大數據應用於犯罪預警
隨著智能電話和電腦網路的普及,犯罪嫌疑人活動會產生大量在線信息,通過對收集到的海量的、模糊的、不完整的案件信息中的涉案人員信息、涉案物品信息、旅館業信息、航班信息、車輛信息等,進行分析、挖掘,發現案件屬性與犯罪人員屬性的關聯規則,進而找到犯罪的規律、特點,對預防、打擊犯罪,保障城市公共安全具有重要的理論意義和現實意義。
以美國為例:隨著智能電話和電腦網路的普及,美國政府和大公司把自己的觸角伸到個人生活的每個方面。美國個人的一切在線行為數據都被收集儲存,再加上已被有關機構掌握的個人信用數據、犯罪記錄和人口統計等數據,有關公司和政府機構可以運用數據挖掘的辦法,監控和預測個人的行為,並做出相關決策。
Ⅱ 怎樣應用大數據分析讓配電網更高效,更安全
想要做好抄數據分析,先要襲多讀點書數據分析方面個人推薦書目:1、《統計與真理——怎樣運用偶然性》2、GoogleAnalytic經典分析3、統計學:從數據到結論(吳喜之)第二版4、統計數據標准化方法補充幾本書:1、統計學的世界2、民生數據的真相3、統計陷阱希望幫到你
Ⅲ 大數據如何入門
聽說你想要學大數據?你確定你搞清楚概念了嗎?我們來做個小測驗吧:
數據分析師在公司是干什麼的?
大數據和普通數據最大的區別是什麼?
你的日常工作中根本接觸不到大數據,你真正想學的是大數據嗎?
有點蒙圈了吧。魚君正是要幫你在最短的時間內理清這些概念,找准自己前進的方向。
大數據之「大」數據,大家會陌生嗎?不會。我們每天的日常生活都會接觸到數據。淘寶購物時貨比三家的價格,年終考核之後發給我們的獎金,發表在知乎上的文章的評論數量,這些都是數據。
從人們會計數開始,數據就有了,數據分析也是。那麼大數據呢?
說到大數據,你就繞不開互聯網。在互聯網出現之前,雖然政府部門和一些公共事業單位通過日積月累獲得了較大量的數據,但並沒有形成足夠的影響力。直到互聯網產品的出現,由於它收集用戶數據的便利性,通常在一天之內就能夠累計其他行業可能一年才能獲取的數據量。
數據量的升級造成演算法和硬體都必須要升級,操作起來的技術難度也就會提高很多。這個時候,就需要專業的技術和平台來完成存儲,處理和分析大數據的工作。比如說,大家都聽過的Hadoop平台,MapRece演算法。都是大數據時代的產物。
因此,我認為,大數據的核心,就在於大。
有一定規模的互聯網公司都會成立專門的大數據部門來管理自己產品所收集到的大數據。數據量越大,處理難度就越高,相應的,可能挖掘到的內涵也會更多。於是,大數據就成了一個產業,一個火熱的產業。
大數據圈子裡的人在大數據行業這個圈子裡,公司提供的職位大致分為三類:數據分析師,數據產品經理,數據工程師。他們緊密合作,共同驅動公司的數據決策文化。
那麼,著三種職位都是做什麼的?又該怎麼入行呢?
數據分析師
數據分析師,是使用大數據的人。核心是掌握各種數據分析工具和數據分析技能,目標是為公司管理層和產品團隊提供分析報告,幫助他們做決策。
實際工作中,數據會被處理成各種不同的類型提供給數據分析師使用,有比較原始的,有比較簡單好用的。因此,數據分析師需要掌握R, SQL,Excel, Python基礎編程等多種技能,以及熟練掌握常用的數據分析方法。
如果你立志於成為一個數據分析師甚至數據科學家,那麼我強烈建議你進行系統的學習。
數據產品經理
數據產品經理是設計數據產品的人。核心技能是數據需求分析和數據產品的設計,和其他的互聯網產品經理並沒有本質的不同。實際工作中,數據產品經理需要收集不同用戶的數據需求並且設計出好用的數據產品提供給大家,幫助他們「用數據做決定」。
怎麼入門呢?關於具體的進階流程,我希望你聽一下我在一塊聽聽上做的講座《4步讓你成為大數據產品經理》,會為你提供非常全面的介紹。
常見的推薦入門書籍有《人人都是產品經理》,《The DatawareHouse Toolkit》,《Lean Analytics》等等。
數據工程師
數據工程師,簡單分兩種,一類是數據挖掘工程師,另外一類是大數據平台工程師。工程師的基本技能當然是寫代碼,寫高質量的代碼。
數據挖掘工程師主要工作是開發大數據流水線以及和數據分析師一起完成數據挖掘項目,而數據平台工程師主要工作是維護大數據平台。
因此,理工科背景出身,掌握C, C#, Python等編程/腳本語言,熟悉各種基礎演算法即可以勝任。
如何用數據做決策
對於那些並不想轉行進入大數據圈子的人,我們要學的究竟是什麼?
我相信,在我們的日常工作中,特別是業績不佳,找不到突破口的時候,都曾想過能否用數據來幫助自己。因為我們都曾或多或少聽過一些牛逼的數據案例,比如紙尿布與啤酒之類。
舉一個簡單的例子,你經營的餐館現在狀況不佳。你可以自己拍腦袋想一堆的新點子來嘗試改善現狀。你也可以,收集整理數據,通過分析找出根本原因,並提出對應解決方案,從而扭轉局面。後者聽起來似乎更加靠譜一些。
那麼,你該收集什麼數據,做什麼分析,這就是你需要學習的:「如何用數據做決策」。從這個角度講,我認為:
人人都應該是數據分析師
學習系統的數據決策和數據分析思維,我們可以從這篇文章開始:從0到1搭建數據分析知識體系。我自己工作中常用的數據分析方法都被囊括在裡面,如果趨勢分析,多維分解,用戶分群,漏斗分析等等。請不要小看一篇文章,知識在精不在多。
你還可以從一本簡單好讀的《誰說菜鳥不會數據分析》開始搭建你的數據分析思維。
關於數據分析的書籍太多了,眾口難調,隨便一搜就有一大堆推薦。而其中所講的知識和理論其實都是類似的。最終要讓他們發揮作用,還是要和實踐結合起來。
因此,我認為,在自己的生意和工作中多實踐數據分析,多思考,遇到問題多在社群中提問和大家探討,是最好的學習辦法。我自己也一直是這樣踐行的。
帶著問題去學習,是最好的方式。
在這個過程中,隨著你對數據的深入了解,掌握更多的數據分析語言和工具。從Excel到SQL,甚至到R和Python。你所能使用的數據量也會越來越大。但你大可不必一開始就扎入這些工具的學習中,那樣會收效甚微。
Ⅳ 大數據究竟怎麼用
您好。很高興為您解答!
大數據是一門技術
希望我的回答對您有幫助,望點贊!若有疑問,請點擊追問!
Ⅳ 什麼是大數據,大數據可以做什麼
大數據(big data),指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據本身什麼都做不了,能指望數據做什麼呢。有大數據,如果不能通過數據
挖掘和數據分析得出對實際操作有價值的信息,那麼它什麼也做不了。
如果理解為對大數據的分析應用能做什麼,那麼它能做的事情就太多了,各個行業都會用到,物流、博彩、營銷、客戶管理、醫療、零售、環保等等都有其身影。
舉例說明:
通過對客戶進行分類整理,根據客戶的購買習慣、年齡、喜好、地域等區分進行推薦產品,進行個性化的頁面展示。還可以根據以往數據來進行動態營銷。
零售,根據需求和庫存的情況,適時調整價格
醫療,根據眾多病人的特徵,分析原因,量級太小的時候,這些特徵根本不明顯,不會得到重視,只有在大量數據中,才能發現平時注意不到的現象。
公共安全。根據以往犯罪數據預測發生犯罪事件的地區與概率。
娛樂。比如《紙牌屋》的製作公司根據以往的用戶習慣,打造出大受歡迎的電視劇。
僅僅有大數據是遠遠不夠的,更需要的是數據挖掘和數據分析的技能(包括大腦與軟體操作),這樣才能發揮出優勢。如果願意學習大數據的相關課程,有個「PPV課」的網站,課程很全面,可以學到很多關於大數據的知識,包括對案例的分析,還有軟體操作等。
Ⅵ 大數據主要涉及哪些領域
大數據的應用領域主要包括大科學、RFID、感測設備網路、天文學、大氣學、交通運內輸、基因組學、生物學、大社會容數據分析、互聯網文件處理、製作互聯網搜索引擎索引、通信記錄明細、軍事偵查、金融大數據,醫療大數據,社交網路、通勤時間預測、醫療記錄、照片圖像和視頻封存、大規模的電子商務等
Ⅶ 大數據包括哪些
大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存回儲、NoSQL資料庫答、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
大數據主要技術組件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大數據技術包括數據採集,數據管理,數據分析,數據可視化,數據安全等內容。數據的採集包括感測器採集,系統日誌採集以及網路爬蟲等。數據管理包括傳統的資料庫技術,nosql技術,以及對於針對大規模數據的大數據平台,例如hadoop,spark,storm等。數據分析的核心是機器學習,當然也包括深度學習和強化學習,以及自然語言處理,圖與網路分析等。
Ⅷ 互聯網大數據是什麼
大數據(big data)是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
特徵:
1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。
2、種類(Variety):數據類型的多樣性。
3、速度(Velocity):指獲得數據的速度。
4、可變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量。
6、復雜性(Complexity):數據量巨大,來源多渠道。
7、價值(value):合理運用大數據,以低成本創造高價值。
(8)大數據在配網擴展閱讀:
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
互聯網大數據的八個趨勢:數據的資源化,與雲計算的深度結合,科學理論的突破,數據科學和數據聯盟的成立,數據泄露泛濫,數據管理成為核心競爭力,數據質量是BI(商業智能)成功的關鍵,數據生態系統復合化程度加強。
網路-大數據
Ⅸ 大數據對互聯網+帶來怎樣的影響
互聯網的大數據是來自人們的使用習慣,人們經常瀏覽網路、網路購物、網路社交等留下的信息都會被大數據的收集工具所收集,並上傳到數據處理平台進行數據處理。比如電商網站會因為你的購買習慣為你提供你可能感興趣的商品,搜索引擎會因為你的搜索習慣提供你想要搜索的結果,社交工具和社交平台更是會因為你的興趣愛好向你推薦你可感興趣的人。
由於大數據的信息量非常的多,一般的處理工具已經無法滿足如此大量數據的處理,雲計算平台也隨之產生。雲計算平台是由大量的伺服器組成的,收集的復雜數據為被分成小數據分配到伺服器上進行處理,這樣即使其中有一台伺服器壞了,其他伺服器也能正常運行,而且壞了的那台服務品的數據會被重新分配到其他伺服器上處理。雲計算平台的產生也同樣促生了雲伺服器和雲主機的產生。
雲伺服器的產生也保證了我們的網站不會出現宕機,網站能更好更快的運行。雲主機不僅能讓網站的訪問速度和數據處理速度更快,還能幫我們收集用戶的使用習慣,讓我們能准確的為用戶提供用戶所需要的服務。