1. 大數據發展面臨的挑戰是什麼

現在大數據是世界都關注的事情,這是因為大數據能夠幫助人們做很多的事情,大數據的發展也是很多國家重視的地方,當然,我國也不例外。我國對大數據還是比較重視的,現在我國的大數據產業發展已經有了一定的基礎,但是我們還不能放鬆,還需要努力,這是因為我國的數據產業還面臨著眾多的挑戰,在這篇文章中我們就給大家詳細介紹一下大數據發展面臨的挑戰,希望這篇文章能夠更好地幫助大家理解大數據知識。
我國發展大數據產業是一定要向數據強國轉變,現在我國只能說是個數據大國,但是要實現從「數據大國」向「數據強國」轉變,還面臨諸多挑戰。具體面臨的挑戰有五個。
第一個挑戰就是對數據資源及其價值的認識不足。這是因為全社會尚未形成對大數據客觀、科學的認識,對數據資源及其在人類生產、生活和社會管理方面的價值利用認識不足,存在盲目追逐硬體設施投資、輕視數據資源積累和價值挖掘利用等現象。所以說這是我國大數據長期內最大的挑戰,但也是比較容易實現的目標。
第二個挑戰就是技術創新與支撐能力不夠。這主要是因為大數據需要從底層晶元到基礎軟體再到應用分析軟體等信息產業全產業鏈的支撐,無論是新型計算平台、分布式計算架構,還是大數據處理、分析和呈現方面與國外均存在較大差距,對開源技術和相關生態系統的影響力仍然較弱,總體上難以滿足各行各業大數據應用需求。而這是大數據短期內最大的挑戰。
第三個挑戰就是數據資源建設和應用水平不高。這是因為用戶普遍不重視數據資源的建設,即使有數據意識的機構也大多隻重視數據的簡單存儲,很少針對後續應用需求進行加工整理。而且數據資源普遍存在質量差,標准規范缺乏,管理能力弱等現象。在很多跨部門、跨行業的數據共享仍不順暢,有價值的公共信息資源和商業數據開放程度低。數據價值難以被有效挖掘利用,所以說,大數據應用整體上處於起步階段,潛力遠未釋放。
第四個挑戰就是信息安全和數據管理體系尚未建立。數據所有權、隱私權等相關法律法規和信息安全、開放共享等標准規范缺乏,技術安全防範和管理能力不夠,尚未建立起兼顧安全與發展的數據開放、管理和信息安全保障體系。
第五個挑戰就是人才隊伍建設還需加強。就目前而言,我國的綜合掌握數學、統計學、計算機等相關學科及應用領域知識的綜合性數據科學人才缺乏,遠不能滿足發展需要,尤其是缺乏既熟悉行業業務需求,又掌握大數據技術與管理的綜合型人才。
我們在這篇文章中給大家介紹了我國大數據發展需要面臨的挑戰,通過這些內容我們不難發現我國要想成為數據強國還有很長的路要走。所以說,我國從數據大國轉變為數據強國還需要我們共同的努力。

2. 大數據帶來哪些安全的挑戰

挑戰一:大數據的巨大體量使得信息管理成本顯著增加
挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加
挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加
挑戰四:大數據的快速處理要求使得獨立決策的比例顯著降低
挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低
挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低

3. 如何應對大數據的挑戰

合理獲取數據,存儲應需而變,篩選和分析大數據,理性面對大數據的誘惑,雲計算和大數據相輔相成,處理好非結構化數據,與硬體保持距離,提高大數據的可視化,安全防範必不可少。

4. 大數據時代中數據分析者所面臨的挑戰是什麼以及對應的解決方案

傳統的數據分析工具已經不適用,需要學習新的數據分析技術
建議學習Python,SQL這些都是大數據分析必備的

5. 說說社保問題大數據帶來的大挑戰有哪些的

社會保險的主要項目包括養老保險、醫療保險、失業保險、工傷保險、生育保險。

6. 大數據時代的發展所面臨的挑戰有哪些

挑戰一:業務部門沒有清晰的大數據需求。

挑戰二:企業內部數據孤島嚴重。

挑戰三:數據可用性低,數據質量差。

挑戰四:數據相關管理技術和架構。

挑戰五:數據安全。

7. 大數據帶來的挑戰有哪些 多選題

容量(Volume):數據決定所考慮數據價值潛信息;[7]
種類(Variety):數據類型性;[7]
速度(Velocity):指獲數據速度;[7]
變性(Variability):妨礙處理效管理數據程[7]
真實性(Veracity):數據質量[7]
復雜性(Complexity):數據量巨源渠道[7]
價值(value):合理運用數據低本創造高價值

8. 大數據時代下,保險業迎來了怎樣的機遇與挑戰

ITjob遠標教育
大數據的發展越來越迅速,滲透到各行各業, 保險業也不例外。大數據不僅為保險業的發展提供了新的機遇和視角,也為保險業提出了新的挑戰。
首先,我們來了解大數據給保險業帶去的機遇。
一、大數據給保險業帶來巨大商業價值
信息技術的進步在現代金融創新中發揮了極為重要的作用。而歷史的經驗告訴我們,大數據對金融業的影響將是全面和深刻的,金融業的經營理念、風險定價、產品設計、營銷策略、客戶服務、風險管控、組織構架乃至於金融監管,都必須適應大數據時代的要求。
但是,雖然這些年保險業在大數據戰略和網路經營等方面進行了積極探索,但是相對於銀行和證券公司,保險公司在電子化、數據化、移動化、平台化方面還處於相對落後狀態。不僅大部分保險公司的內部數據沒有完成整合,甚至數據還處於信息孤島狀態,保險公司對內部數據價值認識也不完整,大部分內部數據的價值沒有被充分挖掘,大數據價值變現也缺少應用場景。
而現在我們已進入互聯網金融時代,所有商業思維正在轉向數據思維,保險業也應該利用大數據來分析客戶需求、開發產品、運營企業以及進行風險定價。
眾所周知,在沒有大數據之前,商業數據往往來源於一些被動的調查表格及滯後的統計數據。大數據時代出現之後,海量數據的採集和處理成為可能。大數據通過全局的數據了解事物背後的真相,相對於以過去的樣本代替全體的統計方法,其統計出來的結果更為精確,有利於保險公司精算師計算產品的收益率和產品定價。與此同時,利用大數據分析結果歸納和演繹出事物的發展規律,可以幫助人們進行科學決策,幫助保險業進行精準營銷。這也就是我們常說的,按照客戶需要設計保險產品,依據客戶需要推薦保險產品,使更多的群眾享受到合理的金融服務。
另外,在新的競爭格局下,傳統金融企業必須充分運用大數據的理念和技術改造自身業務和管理流程,監管機構也必須深刻理解新的競爭格局對風險防範、消費者保護等方面的影響,並善於運用大數據來提升監管的針對性和有效性。
保監會副大大王祖繼就表示,,大數據時代保險業主要面臨四個方面的機遇:一是拓寬行業發展空間。滿足客戶需求是金融企業生存和發展的前提,大數據和互聯網的發展使保險業能夠更好地滿足客戶需求。大數據技術可能突破現有可保風險與不可保風險的界限,使原來不能承保的風險變為可保風險,擴大保險業務經營范圍。大數據技術在營銷領域的應用將能更有效地發現客戶和客戶的潛在需求,進行精準營銷,特別是財產保險中標准化產品的營銷。大數據和互聯網的運用也有利於改善保險消費者的用戶體驗,提高消費者滿意度,改善行業形象。二是提高行業風險管理能力。大數據技術在風險管理領域的應用將支持保險業更精準地定價,提高承保風險識別能力和理賠反欺詐能力,提升保險業的風險管理能力和水平。以精算為例,大數據有利於擴大用於估算風險概率的數據樣本,從而提升精算的准確度,有利於收集更加多維全面的數據,從而形成更加科學的精算模型,也有利於把整體數據樣本進一步細分為子樣本,為精準定價提供精算基礎。三是提升行業差異化競爭能力。大數據通過對客戶消費行為模式的分析,提高客戶轉化率,開發出不同的產品,滿足不同客戶的市場需求,實現差異化競爭。四是提升保險業資金運用水平。大數據基於精確量化的承保損失分布,可以提高保險機構資產負債管理水平,可以在資本市場實施更精準的風險投資組合策略,提高保險業在資本市場的投資回報水平。
為了更好地駕馭大數據對保險行業的改良及改革,保險公司需要從數據獲取 、應用和組織三大方面構建包括開拓數據來源、建立許可與信任、構建商業應用場景、數據分析與建模、數據存儲與整合、組織建設、專注的數據人才、治理和文化在內的八項專業能力。
在被調研公司中,63%的保險公司已將大數據應用於欺詐檢測方面,47%的保險公司已在風險評估與定價方面展開實踐,對於大數據在交叉銷售、防止客戶流失方面的實踐分別都達到了32%,但在索賠預防和緩解方面,多數公司還處於觀望、摸索階段。波士頓咨詢公司(BCG)的研究表明,最重要的「改良效應」發生在風險評估與定價、交叉銷售、防止客戶流失、理賠欺詐檢測及理賠預防與緩解五大環節。大數據對保險行業不但有改良之功,還助力險企突破創新,對此,我們稱其為「改革」。目前,大數據作為「催化劑」在車聯網、可穿戴設備、智能家居和平台生態圈構建方面起了重要作用。車聯網應用受到了較多財產險企業的重視,在被調研的8家財產險公司中,有5家已開展車聯網實踐,佔比達63%;絕大部分險企對於大數據在平台生態圈、智能家居保險與監測服務、穿戴式設備健康服務等領域的嘗試尚未開始,僅16%的險企已開始實踐平台生態圈,8家財產險公司中僅有1家開展了智能家居領域的實踐,而穿戴式設備則尚未有險企予以應用,不過大多數險企都表示,計劃在3年內對這些新技術應用予以實踐。
有人說: 這是一個最壞的時代,金融行業受到了來自互聯金融企業的強烈沖擊;這是一個最好的時代,金融行業可以利用大數據實現涅盤重生 。現在金融業處在一個全球競爭的時代,發達國家金融業在規則制定、金融文化、技術能力、人才隊伍等方面占據著全面的優勢,大數據給我國金融業帶來一個彎道超車的機會。我們應該珍惜並利用好這個機會。

大數據對保險業有好處,那麼應該如果切入呢?
二、 大數據分析在保險業的四大切入點
大數據應用為當今瞬息萬變的保險業提供有效支持,也是促使保險公司提升自我市場競爭力的有效手段。數據結構分析及畫像經常會涉及眾多外部非結構化數據源,如社會媒體類,通過社會媒體大數據可有效幫助保險公司識別潛在保險危機行為用戶。
大數據分析在保險業的四大切入點綜合大數據分析各項優勢,可看出大數據分析在保險業中存在四大主要應用切入點,如在業務結構化、客戶視角營銷、核保管理以及危機管理上均可體現大數據應用的優勢性:
(一) 助力產業結構化
隨著保險業競爭越加激烈,保險公司若想脫穎而出,則需提供價格低於競爭對手的保險產品,以及更有效的經營模式,及一流的客戶服務來贏得客戶青睞。大數據在此能有效助力保險公司行業化能力提升,不僅體現在其經濟性上,還體現在其對保險公司將工作流程有效改進上。
(二) 客戶視角營銷
客戶更青睞於選擇價格透明的保險公司產品。保險公司可以利用大數據分析進行客戶需求變化預測,以此便可提前獲取改進客戶關系的最佳時機。通過保險公司利用大數據分析客戶需求,可有效的幫助呼叫中心進行客戶營銷,獲客將變得更加容易。
(三)核保管理
保險公司可使用大數據預測進行核保活動,以有力的減少不必要的虛假核保信息,主要手段可以是通過在已有的客戶數據前提下,再結合其它外部獲取數據源,對其進行必要性的甄別,以最終確定是否成功核保。基於社會媒體的大數據可對保險業務及時有效性的進行監督,同時為核保提供有效的保障。
(四)危機管理
保險公司可利用大數據分析進行保費條款業務設計,尤其在諸如融入歷史因素、政策變化因素、再保因素等的災難型險種業務中。保險公司可依據個人住址、消防中心距離等其它因素對災難保險業務的價位進行區分設計,更利於保險業務收入增長。同時,保險公司也可使用大數據為其現有保險業務模式進行升級,按需可隨時進行市場價格策略調整。
大數據可幫助保險公司改進需求規劃,促使需求改進及降低運作成本,同時有效支持保險業務規劃實施。動態化監測可有效防止無效性成本增加,以及幫助公司的市場決策制定。

通過上面的文字,我們可以大致了解大數據給保險業帶來的好處,下面我們將講解具體的實施方法,分析保險業如何利用大數據健康發展。
保險行業如何利用大數據涅槃重生
三、 保險行業面臨的挑戰
這是一個最壞的時代,金融行業受到了來自互聯金融企業的強烈沖擊,這是一個最好的時代,金融行業可以利用大數據實現涅槃重生。中國保險行業的滲透率只有3%,大大低於西方發達國家10%左右的滲透率。保險行業分財險和壽險,面對個人的壽險和財險服務主要依靠電話進行銷售,電話銷售正在面臨巨大的挑戰,年輕的80後、90後不願接收來自保險公司的電話,保險行業電話銷售率正在逐年下降,已經影響了保險行業未來的發展。
曾在大型壽險公司有過數年產品研發設計經驗的專家丘斌斌斷言,互聯網保險一定會取代傳統的保險銷售模式 。現在各家互聯網保險產品之所以是小打小鬧,原因是傳統保險還能盈利。但將來未必如此,未來客戶都在互聯網和微信上,為了獲取客戶也必須走這條路。傳統保險從產品設計到代理人制度銷售模式,無法實現站在客戶角度銷售買險。保險公司九成以上保單的件均保費低於萬元,意味大家真正需要的還是保障,特別是價格低、標准化、保障大的產品。
2011年至2013年,國內經營互聯網保險的公司從28家上升到60家,年均增長達46%;規模保費從32億元增長到291億元,增幅總體達到810%;投保客戶數從816萬人增長到5437萬人,增幅達566%。盡管規模爆發式增長,但目前我國互聯網保險在整個保險市場中的佔比仍不到3%,與發達國家如美國30%的佔比相差還很遠。
監管機構對互聯網保險持開放態度,互聯網保險存在的巨大衍生市場空間,電商平台對此也越來越重視,如 最近拿下保險代理牌照的蘇寧,以及一直在航空旅意險細分領域悶聲發財的攜程、去哪兒等。某第三方平台公司2012年全年的互聯網保險傭金收入達900萬,毛利率6%,而2013年上半年的保險傭金收入就已經達到900萬,毛利率25%。
四、 保險行業大數據價值應用現狀
保險行業大數據戰略規劃剛剛起步,相對於銀行和證券公司,保險公司在電子化、數據化、移動化、平台化方面還處於落後狀態。
大部分保險公司信息化工作沒有完成,客戶保單信息查詢和更改仍然是手工和自動化相結合。保險行業對大數據商業價值應用的敏感度不高,大多數保險公司並沒有將大數據列為保險公司基礎能力進行建設。很多保險公司還沒有建設移動App,即使有了移動App的保險公司,其移動App的功能只是集中在保單的簡單查詢,並沒有將移動App定位為客戶入口和主要渠道。保險行業另外一個問題就是內部數據沒有完成整合,數據還處於信息孤島狀態,保險公司對內部數據價值認識不完整,大部分內部數據的價值沒有被充分挖掘,大數據價值變現缺少應用場景。
保險公司的大數據價值變現處於一個原始階段,需要進行數據基礎建設。保險公司大數據價值變現應該從整合內部數據開始,將具有價值的數據集中在大數據管理平台(DMP),為大數據價值變現提供平台支持。
保險行業的大數據價值變現應該從了解用戶入手,藉助於用戶賬號打通各類數據,建立適合於保險行業的標簽體系,利用已有數據標簽和外部數據標簽對用戶進行畫像。
保險公司完成用戶畫像之後,可以依據用戶特點和保險需求,通過數字廣告進行精準營銷,提高客戶滲透力、客戶轉化率和保險產品轉化率。保險行業應重視年輕人消費場景移動化的特點,積極建設移動App,將渠道發展戰略向移動端傾斜,將移動端定位為客戶導入的入口、保險產品展示和購買的平台。保險公司需要標准化保險產品,依據客戶需要設計出簡單標準的保險產品,減少客戶了解、購買保險產品所需的時間,讓保險產品象其他金融產品一樣,一目瞭然、購買簡單。
五、 保險行業大數據價值變現三部曲
(一) 整合內部數據,引入外部數據,為客戶進行畫像
保險行業內部擁有大量具有價值的數據,因此保險行業的大數據戰略應該從整合自身數據開始,挖掘已有數據,對用戶進行畫像。保險公司內部的數據包含客戶的個人屬性和金融信息,這些數據可用來標簽化,為用戶畫像提供支持。
保險公司擁有業務訂單數據、用戶屬性數據、用戶收入數據、客戶查詢數據、理財產品交易數據、用戶行為等數據,這些數據可以通過用戶賬號打通,建立用戶標簽。客戶的交易紀錄和個人基本信息將用於客戶分類,可以將用戶分為理財客戶,教育保險客戶,壽險客戶,意外險客戶,保障險客戶、車險客戶、少兒保險、女性保險客戶等。
保險公司數據集中在內部的數據,主要包含交易數據和訂單數據,由於不含有客戶外部行為數據,無法定義客戶的特點,例如客戶的旅遊愛好、教育需求、文化需求、位置軌跡、理財需求、游戲愛好、體育愛好等。這些信息都是描述用戶的基本信息,也是客戶畫像的基本標簽。
保險公司可以從外部購買這些數據,結合內部數據,保險公司可以掌握客戶多緯度信息,豐富用戶信息,形成360度用戶畫像。360度畫像有助於保險公司從不同角度來了解客戶,也有助於對客戶進行分類管理,依據客戶的特點進行精準營銷和設計產品。
保險公司需要建立大數據管理平台(DMP),集中保險公司內部的數據,依據商業分析對數據進行標簽化,將保險用戶賬號作為唯一標示符打通整體數據。保險公司還需要引入外部移動互聯網數據,借鑒客戶外部行為標簽數據,豐富保險客戶信息,形成360度用戶畫像。由於客戶行為的不確定性,用戶畫像信息需要及時更新,因此DMP中的標簽體系和數據,包括引入的外部數據都應該是動態的,及時進行更新,這樣才可以保證數據的時效性。
大數據管理平台(DMP)是保險行業大數據價值變現的基礎平台,大數據價值變現很多場景都可以利用DMP的數據進行挖掘,包含客戶用戶畫像、精準營銷、新客獲取、老客經營、用戶體驗提升、風險評估等。
(二) 打造移動APP互聯網保險平台,標准化保險產品
未來的社會消費主體是80後和90後,保險產品的主要客戶群也在轉向年輕人。保險公司必須了解這些年輕人的特點,才能夠設計出適合客戶需要的產品,更好地為客戶服務。
年輕人追求快捷舒適的消費方式,移動互聯網時代到來之後,大部分消費場景正在移動化,人們的衣食住行以及文化娛樂消費都可以通過移動App來解決。特別是年輕人,他們消費場景移動化趨勢更加明顯。
保險公司應該關注 消費場景移動化 的趨勢,將連接客戶的方式從電話和線下轉向移動互聯網,利用移動App同客戶進行連接。保險公司的客戶渠道也應該轉向移動互聯網,逐步降低電話銷售獲客比例,將獲客的主要資源向移動App。
電話銷售的一個弊端是信息提供不充分,當保險產品較為復雜時,電話銷售將會考驗銷售人員的表達能力,另外長時間的溝通對客戶體驗也是一個較大的挑戰。年輕人對時間較為敏感,很難耐心聽完復雜的產品介紹,保險公司在未來利用電話銷售來獲取客戶的難度將會越來越大。移動互聯網時代,電話銷售已經成為落後的銷售方式,不能適應年輕一代客戶的需要。
移動App可以提供豐富的產品信息,既可以提供簡明的產品介紹,又可以提供直觀的數據和圖表。移動App還可以通過炫酷視頻和圖片向客戶轉達更多的理念價值。這些豐富的信息不但能夠讓客戶在短時間內了解產品,還可以提高客戶體驗,提高客戶購買產品的可能性。利用移動 App進行產品推薦不但可以提高產品的轉化率,還可以降低營銷成本,提高客戶體驗。
保險公司另外的挑戰是保險產品不夠豐富,無法覆蓋客戶所有場景的保險需要;保險產品設計過於復雜,客戶購買時需要掌握的信息過多,影響客戶購買體驗。保險公司將產品展示平台轉向移動App後,必須對保險產品進行標准化,保險產品介紹一定要簡單明了,突出重點和客戶利益,並依據客戶各種場景需設計產品。簡單標準的保險產品迎合了年輕人的需要,有利於快速銷售、形成規模,有利於保險公司延續此保險產品的生命周期,降低產品開發成本。
未來保險產品需要同生活場景相結合,滿足客戶對各種保險產品的需要。例如在車險領域可以增加爆胎險、異物撞擊險、自然災害險、高溫險、低溫險等。在保障險領域可以增加更多的場景險,例如交通堵塞險、延誤險、高空墜物險、天氣突變險、暴雨險等。
(三) 利用大數據分析來改變保險行產品定價方式,以客戶為中心設計保險產品
互聯網金融時代,所有商業思維應該轉向數據思維,保險行業也應該利用大數據來分析客戶需求、開發產品、運營企業以及進行風險定價。
保險精算師設計保險產品時,主要依賴於理賠標的發生的概率,大部分數據來源於行業的歷史數據和統計數據,這些數據都不是實效數據,並且很多數據統計方式已經過時,小樣本數據同真時數據的方差正在變大。依靠誤差較大的數據無法設計出接近真實概率的產品,並會影響保險產品的定價方式。設計出來產品風險偏好不準,可能會導致保險產品收益過低,客戶不傾向於購買;也可能導致保險產品覆蓋不了風險,導致保險產品出現虧損。
過去保險產品在設計時並沒有從客戶角度出發,主要關注風險和收益,產品設計出來是否滿足客戶需要,保險公司其實根本就不知道。當保險產品推出後,其是否會被被客戶接受,很大程度取決於市場推廣力度和銷售人員能力。在這種情況下保險公司投入資金較大,產品風險很高。年輕的一代的正在走向分化,很難有一個產品滿足大部分客戶需要。在新的社會形態下,保險公司需要深入了解客戶特點,依據客戶的需要來設計保險產品,這樣才能保證保險產品的銷量,形成一定規模,覆蓋風險事件發生概率。
大數據分析技術、標簽數據、客戶行為數據、全局數據可以幫助保險企業改變保險產品的定價方式。基於大數據技術和全局數據的產品設計模型可以幫助保險公司設計出較高收益、較低風險概率的產品。客戶行為數據和標簽數據可以幫助保險公司了解客戶特點,設計出滿足客戶需要的保險產品。以數據分析和客戶需求為出發點的保險產品設計,將會在產品收益、客戶體驗、風險管理等方面取得領先。 國外一些領先的保險公司在設計保險產品時,已經利用大數據分析技術進行設計,並取得了較好的市場反饋,產品的盈利可觀。大數據將會幫助保險公司設計出風險分析充分、適應客戶需要的保險產品。
總結,大數據商業應用是移動互聯網時代的趨勢,未來時代的特徵,任何行業都無法迴避。保險行業應該重視大數據技術和價值在本行業的應用,購買外部數據,利用DMP進行用戶畫像;標准化保險產品,利用移動App進行獲客、營銷、數據採集;藉助於大數據技術改變過保險產品定價方式,以客戶為中心來設計保險產品。

保險業可利用大數據涅槃重生。那麼,在大數據環境下,保險業也需要適應新保險消費特徵,迎接新的挑戰,不然,即使重生,也容易滅亡。
六、 大數據環境下的保險營銷需適應新保險消費特徵
大數據時代的到來改變了數據的採集、傳輸、存儲、處理方式,引起了生活方式和社會經濟的變革,也給保險業帶來了全面和深刻的影響。保險公司紛紛利用大數據來進行保險營銷、保險服務方面的嘗試和創新,但目前的保險大數據環境尚不成熟,現有的保險消費方式還處在由傳統到新型、由被動到主動的一個變化期,大數據環境下的保險營銷需要適應新的保險消費特徵。
(一) 保險消費選擇多樣化
傳統保險模式運作下,保險公司評估消費者的風險水平、消費能力、消費意願的能力不強,導致部分領域保險產品定價過高,部分領域成為剩餘市場。大數據環境下,保險業可以獲得全量、實時、潛在的數據來進行詳細分析,進行保險產品細分和個性化設計,保險公司的風險管理和成本管控可以更加精細化,這為保險產品創新帶來了廣闊空間,長期困擾保險業的產品和服務同質化問題有望從根本上得到解決。
比如,保險公司根據消費者的網站登錄痕跡、朋友圈留言、貸款信用記錄等信息,發現不同消費群體保險需求和風險特質,為保險消費者提供諸如戶外騎行保險、醫療整形保險、變現借款保證保險等特色險種,保險消費選擇更加多樣。
(二) 保險消費流程簡單化
傳統保險經營過程中,保險公司與投保人信息不對稱的情況較為突出,保險公司通過要求投保人應當履行如實告知義務,投保時需要填寫內容繁多的投保單,出險後需要提出理賠申請和提供繁瑣的證明材料。在大數據環境下,風險特徵的描述數據極大豐富,保險公司可以通過各種渠道獲取更加全面的風險信息,運用個人信息、交易記錄、氣象信息等社會數據來分析和掌握客戶情況,獲得與承保理賠相關的信息,在控制風險的前提下進一步減少投保人的告知責任,有效簡化承保理賠手續,保險消費流程變得更加簡單。
比如,保險公司根據掌握的網路交易數據,研究消費者網購習慣和退貨概率,為不同風險的消費者提供不同保費的退貨運費險,消費者只需一鍵購買;對於購買了航班延誤險的消費者,無需提供氣象證明,甚至不需提出理賠申請,保險公司就能夠根據氣象信息等大數據資源主動理賠。
(三) 保險消費理念前沿化
大數據環境下,傳統保險業在集合大數方面的優勢逐漸弱化,保險技術服務壁壘逐步瓦解。通過使用各種搜索引擎和比價平台,消費者消費洞察力不斷提高,保險消費理念也變得更加前沿。
一方面,越來越多的保險消費者脫離了傳統櫃台業務模式,開始使用各種自助終端購買保險業務。通過手機APP應用軟體就可以輕松完成保險產品的查詢和購買,甚至自助完成車險簡易案件的查勘工作。
另一方面,保險消費者出現偏好碎片化、謀求資金收益的消費傾向。在透明公開的渠道選擇保險產品時,消費者更加偏好設計簡單、投保便捷、費率較低的保險產品。保障項目經過分解、條款說明更加簡單、產品保費也大大降低的保險產品,更加適應消費者自行挑選的需要。此外,大數據環境下的保險消費者比較熟悉互聯網金融,容易在各類理財產品間進行比較,在購買網上銷售的投連、萬能型保險產品時更加註重資金收益。
(四) 保險消費體驗延伸化
傳統的保險服務集中於經濟賠償與給付,保險消費體驗也只局限於保險公司履行了賠付責任。 大數據環境下,保險公司與客戶的關系不再是一對一的交互溝通,逐漸形成多維網狀交互溝通模式,基於客戶數據的客戶關系管理變得尤為重要。
保險公司可以藉助大數據的積累,整合汽車修理、零配件供應、醫療健康服務等供應鏈,進一步延伸保險產業鏈邊界、維護客戶關系,在降低保險經營成本的同時,不斷優化保險消費體驗。目前,保險公司可以定期為消費者提供包括車輛風險檢查、保養維修、交易資訊、健康管理在內的各項服務,未來還有可能基於大數據為消費者提供更加全面的風險管理創新服務。

保險業利用大數據來發展,換而言之,大數據也是為保險業提供了一種新的視角。
七、 大數據為保險業提供另一種視角
在客戶需求的精確 鎖定方面
大數據給保險業帶來了很多便利。以前,對於客戶的分類局限於「客戶屬於哪一類」,而現在,則擴展到「客戶是哪一類」。
傳統的精算技術只在一定緯度量化風險,很難充分反映風險的復雜性。而在互聯網大數據時代,則前所未有的創造了風控每個投保標的的可能,從未有過如此多緯度、低成本的數據,如此系統、新鮮地提供給保險業。
什麼星座的人最喜歡買保險?哪個地區的人最喜歡給自己買保險?這些曾經看起來無關乎保費的問題,在互聯網大數據時代背景下,也成為了險企定位客戶的另一種視角。在泰康人壽的保單中,最喜歡買保險的是天秤座,而最不喜歡買保險的是白羊座;最喜歡給自己買保險的是寧波人,而最不喜歡給自己買保險的則是陝西人。
「 上述結論沒有什麼道理,這是泰康人壽的數據分析出來的。以前,對於客戶的分類局限於『客戶屬於哪一類』,而現在,則擴展到『客戶是哪一類』 。」泰康人壽首席信息官 劉大為 在日前召開的「互聯網大數據與精算創新論壇」上,用幾個有趣的結論介紹了大數據時代保險業正在發生的變革。
(一)精準定位
我的客戶在這里
「在當前時代背景下,可以運用大數據分析法來整合分析金融保險需求的關聯度,在不同方向、專業形式的共同配合下,做好大數據的升級分析整合的系統工程,從客戶的角度,綜合統籌各種信息,捕捉各種需求,從而尋找潛在的客戶,並預測客戶的具體需求。」 中國保監會原副大大、中國精算師協會創始人 魏迎寧 在論壇上表示,從保險業來看,在客戶需求的精確鎖定方面,大數據給我們帶來了很多便利。
在大數據背景下,除了對數據的縱向分析之外,可以從橫向來分析消費者的需求。客戶的具體收入水平、文化程度、價值觀念,也會影響其對保險的態度,通過對網路消費的數額、職業、學歷等數據所進行的分析,也可以作為保險需求分析的重要部分。還可以通過搜集互聯網用戶的地域分布,搜索關鍵詞、購物習慣、流覽記錄和興趣愛好等一系列的數據,在保險產品消費中實現需求定向、偏好定向,真正做到精準化、個性化營銷。

9. 大數據的發展所面臨的挑戰有哪些

隨著2017年大數據應用的發展,大數據價值得以充分的體現,大數據在企業和社會層面成為重要的戰略資源,數據成為新的戰略制高點,是大家搶奪的新焦點。一個新行業的出現,必將在工作職位方面有新的需求,大數據的出現也將推出一批新的就業崗位,例如,數據產品經理、大數據演算法工程師、大數據分析師、數據管理專家等等。具有豐富經驗的數據分析人才將成為稀缺的資源,數據驅動型工作將呈現爆炸式的增長。去 大 講台咨詢下,推出在線運用科學混合式自適應學習系統組織線上教學,希望可以幫助到你。

10. 大數據帶來的挑戰有哪些

大數據近年來發展的非常快,現在也普遍得到應用,大數據帶來了機遇同時內也帶來了挑戰,當大數容據產業鏈、行業應用逐步發展完善之後,大數據將會形成質變,創新整個社會形態。光環大數據培訓認為,大數據行業的真正挑戰來自三個方面:一是原來的分析基礎要變化,要融合統計學、計算理論基礎、邏輯基礎。二是,計算技術也需要重新革新,無論是存儲、計算語言、還是計算方法都需要重新來過。三是,大數據做出來的結論對不對,還無法大規模驗證,這是目前面臨的最大挑戰。