大數據網路安全分析
『壹』 大數據與網路安全有何聯系
可以通過大數據的分析來確保網路安全 網路安全是是確保大數據順利進行 的基礎 點贊吧
『貳』 大數據和網路安全在今後的發展前景哪個會更好那
應該說,兩個都是都是今後發展的重點,再加上人工智慧,個人覺得將會是互聯網乃至工版業的一次權革命。
1、大數據方面。大數據范圍很廣,每個行業都有相應的應用,但是投入也是很大的,例如鐵路系統,車輛違章監控系統,ETC系統等都應用了大數據,這些大數據將進行提煉後,用於基礎分析、客戶引導、智能管理等。對於提高政府職能,降低能耗,開源節流,人工輔助等都有很大很深的應用。總的來說,大數據中所有的數據都是有價值的,但是採集數據有很多的路要走,更多的需要物聯網、人工智慧的配合。
2、網路安全方面。這個應該是當下整個社會的一個突出問題。網路改變了人們的使用方式,推動了一系列的變革,但問題也是很突出,它是一把雙刃劍,有利有弊,但總體利大於弊,正因為網路的不斷發展,才推動了大數據的進步。
3、人工智慧方面。人工智慧應該是一個 今後發展的這個重點及亮點。人工智慧主要利用語言、圖像識別、感測器等設備集中進行運算,發揮其特定的作用,來執行任務。
『叄』 如何利用大數據來處理網路安全攻擊
「大數據」已經成為時下最火熱的IT行業詞彙,各行各業的大數據解決方案層出不窮。究竟什麼是大數據、大數據給信息安全帶來哪些挑戰和機遇、為什麼網路安全需要大數據,以及怎樣把大數據思想應用於網路安全技術,本文給出解答。
一切都源於APT
APT(Advanced Persistent Threat)攻擊是一類特定的攻擊,為了獲取某個組織甚至是國家的重要信息,有針對性的進行的一系列攻擊行為的整個過程。APT攻擊利用了多種攻擊手段,包括各種最先進的手段和社會工程學方法,一步一步的獲取進入組織內部的許可權。APT往往利用組織內部的人員作為攻擊跳板。有時候,攻擊者會針對被攻擊對象編寫專門的攻擊程序,而非使用一些通用的攻擊代碼。此外,APT攻擊具有持續性,甚至長達數年。這種持續體現在攻擊者不斷嘗試各種攻擊手段,以及在滲透到網路內部後長期蟄伏,不斷收集各種信息,直到收集到重要情報。更加危險的是,這些新型的攻擊和威脅主要就針對國家重要的基礎設施和單位進行,包括能源、電力、金融、國防等關繫到國計民生,或者是國家核心利益的網路基礎設施。
現有技術為什麼失靈
先看兩個典型APT攻擊案例,分析一下盲點在哪裡:
1、 RSA SecureID竊取攻擊
1) 攻擊者給RSA的母公司EMC的4名員工發送了兩組惡意郵件。郵件標題為「2011 Recruitment Plan」,寄件人是[email protected],正文很簡單,寫著「I forward this file to you for review. Please open and view it.」;裡面有個EXCEL附件名為「2011 Recruitment plan.xls」;
2) 很不幸,其中一位員工對此郵件感到興趣,並將其從垃圾郵件中取出來閱讀,殊不知此電子表格其實含有當時最新的Adobe Flash的0day漏洞(CVE-2011-0609)。這個Excel打開後啥也沒有,除了在一個表單的第一個格子裡面有個「X」(叉)。而這個叉實際上就是內嵌的一個Flash;
3) 該主機被植入臭名昭著的Poison Ivy遠端控制工具,並開始自BotNet的C&C伺服器(位於 good.mincesur.com)下載指令進行任務;
4) 首批受害的使用者並非「位高權重」人物,緊接著相關聯的人士包括IT與非IT等伺服器管理員相繼被黑;
5) RSA發現開發用伺服器(Staging server)遭入侵,攻擊方隨即進行撤離,加密並壓縮所有資料(都是rar格式),並以FTP傳送至遠端主機,又迅速再次搬離該主機,清除任何蹤跡;
6) 在拿到了SecurID的信息後,攻擊者就開始對使用SecurID的公司(例如上述防務公司等)進行攻擊了。
2、 震網攻擊
遭遇超級工廠病毒攻擊的核電站計算機系統實際上是與外界物理隔離的,理論上不會遭遇外界攻擊。堅固的堡壘只有從內部才能被攻破,超級工廠病毒也正充分的利用了這一點。超級工廠病毒的攻擊者並沒有廣泛的去傳播病毒,而是針對核電站相關工作人員的家用電腦、個人電腦等能夠接觸到互聯網的計算機發起感染攻擊,以此 為第一道攻擊跳板,進一步感染相關人員的U盤,病毒以U盤為橋梁進入「堡壘」內部,隨即潛伏下來。病毒很有耐心的逐步擴散,利用多種漏洞,包括當時的一個 0day漏洞,一點一點的進行破壞。這是一次十分成功的APT攻擊,而其最為恐怖的地方就在於極為巧妙的控制了攻擊范圍,攻擊十分精準。
以上兩個典型的APT攻擊案例中可以看出,對於APT攻擊,現代安全防禦手段有三個主要盲點:
1、0day漏洞與遠程加密通信
支撐現代網路安全技術的理論基礎最重要的就是特徵匹配,廣泛應用於各類主流網路安全產品,如殺毒、入侵檢測/防禦、漏洞掃描、深度包檢測。Oday漏洞和遠程加密通信都意味著沒有特徵,或者說還沒來得及積累特徵,這是基於特徵匹配的邊界防護技術難以應對的。
2、長期持續性的攻擊
現代網路安全產品把實時性作為衡量系統能力的一項重要指標,追求的目標就是精準的識別威脅,並實時的阻斷。而對於APT這種Salami式的攻擊,則是基於實時時間點的檢測技術難以應對的。
3、內網攻擊
任何防禦體系都會做安全域劃分,內網通常被劃成信任域,信任域內部的通信不被監控,成為了盲點。需要做接入側的安全方案加固,但不在本文討論范圍。
大數據怎麼解決問題
大數據可總結為基於分布式計算的數據挖掘,可以跟傳統數據處理模式對比去理解大數據:
1、數據采樣——>全集原始數據(Raw Data)
2、小數據+大演算法——>大數據+小演算法+上下文關聯+知識積累
3、基於模型的演算法——>機械窮舉(不帶假設條件)
4、精確性+實時性——>過程中的預測
使用大數據思想,可對現代網路安全技術做如下改進:
1、特定協議報文分析——>全流量原始數據抓取(Raw Data)
2、實時數據+復雜模型演算法——>長期全流量數據+多種簡單挖掘演算法+上下文關聯+知識積累
3、實時性+自動化——>過程中的預警+人工調查
通過傳統安全防禦措施很難檢測高級持續性攻擊,企業必須先確定日常網路中各用戶、業務系統的正常行為模型是什麼,才能盡早確定企業的網路和數據是否受到了攻擊。而安全廠商可利用大數據技術對事件的模式、攻擊的模式、時間、空間、行為上的特徵進行處理,總結抽象出來一些模型,變成大數據安全工具。為了精準地描述威脅特徵,建模的過程可能耗費幾個月甚至幾年時間,企業需要耗費大量人力、物力、財力成本,才能達到目的。但可以通過整合大數據處理資源,協調大數據處理和分析機制,共享資料庫之間的關鍵模型數據,加快對高級可持續攻擊的建模進程,消除和控制高級可持續攻擊的危害。
『肆』 大數據和網路安全哪個方向更好
隨著工業物聯網(IIoT)在製造企業的全面鋪開,安全專家必須准備好弄懂這些網路應有的樣子與操作。同時,所有安全計劃都需擁有足夠的彈性,要能扛住迎面而來的各種攻擊。未來十年將給網路安全帶來最大影響的是什麼?簡單講,這個問題的答案有兩個方向:人工智慧(AI)和大數據分析。
鑒於這些技術發展會給未來時光帶來重大影響,未來的安全環境,將取決於AI和分析如何融入囊括了網路及物理安全的全面彈性安全計劃。
網路安全-工業物聯網
至於如何構建該整體安全項目,能夠賦予製造商資產清單與網路可見性的網路監視技術是個不錯的開始。隨著公司企業越來越依賴數字環境,擁有該總體安全觀也變得越來越重要了。如果十年內發生的攻擊類似烏克蘭兩次遭遇的大斷電,或挪威鋁業巨頭NorskHydro遭遇的勒索軟體攻擊,公司企業需准備備用工廠,以便在必要的時候能夠手動運營以阻止攻擊。
未來5~10年,物聯網對工業運營的意義愈加重大,工業系統也將接入可大幅降低設備間通信延遲的5G網路,因而工業系統聯網程度增加幾乎已成不爭的事實。物聯網設備安全通常天生不怎麼強,所以當物聯網設備大規模部署的時候,工業系統便面臨相當棘手的設備安全管理挑戰了。
網路安全-工業運營
更糟的是,連接性增加意味著能嘗試突破系統的黑客也增加了,更高端的黑客或許能夠窺探系統,而網路安全問題也隨著連接性的增長而愈加惡化。而且,很多工業系統如果以特定方式操縱可能傷及人命,所以連接性增加不僅影響到工業系統管理和保護,也影響公共政策制定。
網路安全-數字轉型
工業網路安全遭受的最大影響將是數字轉型的非預期結果。數字轉型很好,也很有必要,但同時伴隨著風險。隨著我們引入越來越多的數字終端,數據流隨之產生。數據流的飛速增長將超出我們的處理范圍,無法現場有效分析全部數據。而且,我們將以這些數據驅動有關過程的決策,甚或驅動過程本身。最終,我們或許會開始通過人工智慧/機器學習將這些分析性數據產品饋送回過程。
換句話說,過程產生數據,數據離開過程網路流向雲、霧、湖、現場、外部等等地方,被分析、重用再饋送回過程。所有這些都會以我們剛剛才開始考慮的方式,往過程數據及該控制/過程網路外部相關系統,引入新的風險。
『伍』 大數據在網路安全中的挑戰與機遇
大數據在網路安全中的挑戰與機遇
雖然大數據是一個需要捍衛的挑戰,但大數據概念現在已廣泛應用於網路安全行業。
而大數據的高速、多樣化、數量大的特性使其應用成為組織面臨的一種挑戰,它也為潛在的攻擊者提供了一個誘人的目標。
但大數據技術也被用於幫助網路安全,因為許多相同的工具和方法可用於收集日誌和事件數據,快速處理,並發現可疑活動。
更多的數據,更多的大腦
Bitdefender公司的高級威脅分析師Bogdan Botezatu表示:「現代網路安全解決方案主要由大數據驅動的。」
首先,所有主要的防病毒和端點防護供應商以及網路安全和防火牆提供商,都會對他們的系統進行大量的惡意軟體和已知的攻擊途徑的培訓。
有了數百萬份樣本,安全供應商可以訓練他們的系統識別已知的攻擊,但也可以識別允許他們發現以前從未見過的攻擊的模式。
所有主要的安全廠商都已經將高級威脅檢測、行為分析和機器學習添加到他們的系統中,或者正在努力趕上已經這樣做的競爭對手。
Botezatu說:「機器學習演算法每天都會在大量惡意文件中進行多次訓練。質量保證運行在已知的良好文件上,以最大限度地減少誤報。」
供應商並不是唯一收集信息虛擬海洋的人。
在組織內部,數據中心運營商正在從本地和雲計算基礎設施收集數據饋送,以查找可疑文件、行為和通信。
Botezatu說:「事件關聯技術將攻擊的不同組件組合在一起以阻止其冷卻。」文件信譽系統會考慮客戶池中存在多少個應用程序正在運行的實例,以了解該應用程序具有多大的惡意可能性。
沒有存儲和分析大量信息的能力,這些都不可能實現,並且可以實時進行。
「大數據為網路安全世界提供動力。」他說,「關於如何保護大數據的知識方面,沒有垂直行業像我們這樣享有特權。」
這是至關重要的,因為安全事件的范圍越來越大。
據網路安全廠商Gemanto公司在今年4月發布的報告顯示,去年有26億條記錄被突破,這一數字首次突破20億,比上一年增長88%。平均每天超過700萬條記錄。
更加令人擔憂的是,根據最新的Verizon數據泄露調查報告,在大多數違規情況下,系統受損的時間以分鍾為單位進行測量,並在數小時內進行泄漏。
這將人們帶入了網路安全領域的下一個大數據即將產生影響的領域:事件響應。
隨著越來越多的數據收集的不僅僅是攻擊,還涉及到數據中心如何應對這些攻擊,安全行業正在開始創建自動化劇本,以便組織能夠對攻擊進行即時和智能的響應。
沒有這種規模的公司要麼必須等到收集足夠的數據才能使分析有用或與同行分享他們的劇本。
企業需要留意供應商在這個領域的出現,他們不僅可以幫助數據中心將事件響應劇本集中在一起並實現自動化,還可以將它們收集到一個中心位置,在那裡他們可以對響應進行分析,找出最好的策略,然後將這些知識添加到他們的推薦引擎中。
『陸』 大數據應用模式及安全風險分析有哪些
當前各個領域數據生成速度逐漸加快,需要處理的數據量急劇膨脹。這些巨大的數據資源蘊藏著潛在的價值,需要對其進行有效的分析和利用。當前數據的特點除了數量龐大之外,數據類型也變得多樣化,其中包括了結構化數據、半結構化數據以及非結構化數據。這些數量龐大、種類繁多的海量數據,給傳統分析工具帶來了巨大的挑戰。當前對數據的分析不再是簡單的生成統計報表,而是利用復雜的分析模型進行深人的分析,傳統分析技術例如關系資料庫技術已經不能滿足其要求。在擴展性上,通過增加或更換內存、CPU、硬碟等設備原件以打一展單個節點的能力的縱向打一展(scale up)系統遇到了瓶頸;只有通過增加計算節點,連接成大規模集群,進行分布式並行計算和管理的橫向打一展(scale out )系統才能滿足大數據的分析需求[u。因此傳統工具在擴展性上遇到了障礙,必須尋求可靠的數據存儲和分析技術來分析和利用這些龐大的資源。利用雲計算平台搭建Hadoop計算框架成為當前處理大數據的主要手段。然而由於雲計算和Hadoop應用的特點和自身安全機制薄弱,不可避免地帶來了安全風險。
1、大數據應用模式
雲計算(Cloud Computing)是一種基於Internet的計算,是以並行計算(Parallel Computing )、分布式計算(Distributed Computing)和網格計算(Grid Compu-tin助為基礎,融合了網路存儲、虛擬化、負載均衡等技術的新興產物。它將原本需要由個人計算機和私有數據中心執行的任務轉移給具備專業存儲和計算技術的大型計算中心來完成,實現了計算機軟體、硬體等計算資源的充分共享[z}。企業或個人不再需要花費大量的費用在基礎設施的購買上,更不需要花費精力對軟硬體進行安裝、配置和維護,這些都將由雲計算服務商CSP( Cloud Service Provider)提供相應的服務。企業或個人只需按照計時或計量的方式支付租賃的計算資源。雲計算服務商擁有大數據存儲能力和計算資源,被視為外包信息服務的最佳選擇[31因此大數據的應用往往與雲計算相結合。
Hadoop是當前最廣為人知的大數據技術實施方案,它是Google雲計算中的Map/Rece}4}和GFS( Google File System)的開源實現。Hadoop提供了一種計算框架,其最為核心的技術是HDFS ( HadoopDistributed File System)以及MapReee } HDFS提供了高吞吐量的分布式文件系統,而MapReee是大型數據的分布式處理模型。Hadoop為大數據提供了一個可靠的共享存儲和分析系統[5-6 }v
盡管有一些組織自建集群來運行Hadoop,但是仍有許多組織選擇在租賃硬體所搭建的雲端運行Hadoop或提供Hadoop服務。例如提供在公有或私有雲端運行Hadoop的Cloudera,還有由Amazon提供的稱為Elastic MapReee的雲服務等f}l。因此將雲計算與Hadoop結合處理大數據已成為一種趨勢。
2、大數據安全風險分析
隨著大數據應用范圍越來越廣,對數據安全的需求也越來越迫切。
由於雲計算的特點是將數據外包給雲服務商提供服務,這種服務模式將數據的所有權轉移給了CSP,用戶失去了對物理資源的直接控制[A1。而雲中存儲的大數據通常是以明文的方式存在的,CSP對數據具有底層控制權,惡意的CSP有可能在用戶不知情的情況下竊取用戶數據,而雲計算平台亦可能受到攻擊致使安全機制失效或被非法控制從而導致非授權人讀取數據,給大數據安全帶來了威脅。
Hadoop在設計之初並未考慮過安全問題,在Ha-doop 1. 0. 0和Cloudera CDH3版本之後,Hadoop加人了Kerberos的身份認證機制和基於ACL的訪問控制機制[91。即使在安全方面增加了身份認證和訪問控制策略,Hadoop的安全機制仍然非常薄弱,因為Ker-beros的認證機制只應用於客戶機(Clients )、密鑰分發中心(I}ey Distribution Center, I}DC )、伺服器(Serv-er)之間,只是針對機器級別的安全認證,並未對Ha-doop應用平台本身進行認證[}o}。而基於ACL的訪問控制策略需要通過在啟用ACL之後,對hadoop-policy. xml中的屬性進行配置,其中包括9條屬性,它們限制了用戶與組成員對Hadoop中資源的訪問以及Datanode和Namenode或Jobtracke:和Tasktrackers等節點間的通信,但該機制依賴於管理員對其的配置[川,這種基於傳統的訪問控制列表容易在伺服器端被篡改而不易察覺。而且基於ACL的訪問控制策略粒度過粗,不能在MapRece過程中以細粒度的方式保護用戶隱私欄位。況且針對不同的用戶和不同應用,訪問控制列表需要經常作對應的更改,這樣的操作過於繁瑣且不易維護。因此Hadoop自身的安全機制是不完善的。
2.1 不同應用模式下CSP及Uers帶來的安全風險
雲計算中Hadoop有多種應用模式。在私有雲中搭建Hadoop,即企業自己應用Hadoop,使用該平台的是企業內部各個部門的員工,外部人員無法訪問和使用這些資源。這時的CSP指的是Hadoop的創建和管理者,IaaS級和PaaS級CSP為相同的實體;在公有雲平台應用Hadoop , C SP有2級,IaaS級CSP,提供基礎設施;PaaS級C SP,負責Hadoop的搭建和管理。這時兩級CSP往往是不同的實體。
『柒』 大數據存在的安全問題有哪些
一、分布式系統
大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。
二.數據存取
大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。
三.數據不正確
網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。
四.侵犯隱私
大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。
五、雲安全性不足
大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。
關於大數據存在的安全問題有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『捌』 大數據時代網路安全如何保障
如果是個人隱私文件需要加密可以使用紅線隱私保護系統,如果是企業數據安全可以選擇紅線防泄密系統,都是加密數據,杜絕泄密問題。
『玖』 基於大數據環境的網路安全態勢感知 會提什麼問題
原創一份 什麼時候交呢/