萬以內的大數據
國內的數據分析軟體比較多,大數據分析軟體推薦選擇Smartbi Insight(點擊連鏈接可以直接專免費下載,或者進入屬smartbi.com.cn ,在線體驗使用),定位於前端數據分析,對接各種業務資料庫,數據倉庫和大數據平台,滿足各種數據分析應用需求,如大數據分析,自助探索分析,地圖可視化,移動管理駕駛艙,指揮大屏幕,企業報表平台等。
❷ 大數據分析的具體內容有哪些
隨著互聯網的不斷發展,大數據技術在各個領域都有不同程度的應用
1、採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
2、導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3、統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4、挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
❸ 求推薦一款1萬5到2萬之間適合做大數據分析計計算的筆記本電腦(數據量一般在2-15G左右)。
HP的zbook 15i7 16G 512Gssd那款,大概1.8萬左右可以上京東自營查,開好發票信息,足夠用
惠普(HP)大師本專ZBOOK STUDIO G3-22 15.6英寸移屬動 筆記本 工作站i7-6700HQ/8G/512G SSD/Win10/4G獨顯
網頁鏈接 13999
❹ 大數據包括什麼
大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
(4)萬以內的大數據擴展閱讀:
大數據的應用
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
❺ 常見大數據應用有哪些
Gartner的分析師Doug Laney在講解大數據案例時提到過8個更有新意更典型的案例,可幫助更清晰的理解大數據時代的到來。
1. 梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2. Tipp24 AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3. 沃爾瑪的搜索。這家零售業寡頭為其網站自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4. 快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5. Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6. PredPol Inc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
8. American Express(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。
❻ 資料庫大數據
傳統資料庫處理大數據很困難吧,不建議使用傳統資料庫來處理大數據。
建議研究下,Hadoop,Hive等,可處理大數據。
如果有預算,可以使用一些商業大數據產品,國內的譬如永洪科技的大數據BI產品,不僅能高性能處理大數據,還可做數據分析。
當然如果是簡單的查詢,傳統資料庫如果做好索引,可能可以提高性能。
❼ 大數據資料庫有哪些
分享10個超好用的資料庫:
1、CouchDB
CouchDB是一款完全擁抱互聯網的資料庫,它將數據存儲在文檔中,這種文檔可以通過Web瀏覽器來查詢,並且用JavaScript來處理。它易於使用,在分布式上網路上具有高可用性和高擴展性。支持的操作系統:Windows、Linux、OS X和安卓。
2、Blazegraph
Blazegraph是一種高度擴展、高性能的資料庫。它既有使用開源許可證的版本,也有使用商業許可證的版本。
3、Cassandra
Cassandra資料庫最初由Facebook開發,現已被1500多家企業組織使用,它能支持超大規模集群;比如 說,蘋果部署的Cassandra系統就包括75000多個節點,擁有的數據量超過10 PB。
4、FlockDB
FlockDB是一種非常快、擴展性非常好的圖形資料庫,擅長存儲社交網路數據。雖然這個項目的開源版已有一段時間沒有更新了,但它仍可用於下載。
5、Neo4j
Neo4j是速度快、擴展性佳的原生圖形資料庫,它具有大規模擴展性、快速的密碼查詢性能和經過改進的開發效率。支持的操作系統:Windows和Linux。
6、Pivotal Greenplum Database
Greenplum是同類中不錯的企業級分析資料庫,能夠非常快速地對龐大的海量數據進行功能強大的分析。它是Pivotal大資料庫套件的一部分。支持的操作系統:Windows、Linux和OS X。
7、Impala
Cloudera基於SQL的Impala資料庫是面向Apache Hadoop的開源分析資料庫。它可以作為一款獨立產品來下載,又是Cloudera的商業大數據產品的一部分。支持的操作系統:Linux和OS X。
8、InfoBright社區版
InfoBright為數據分析而設計,這是一種面向列的資料庫,具有很高的壓縮比。InfoBright.com提供基於同一代碼的收費產品,提供支持服務。支持的操作系統:Windows和Linux。
9、Hibari
這個基於Erlang的項目是一種分布式有序鍵值存儲系統,有很強的一致性。它最初是由Gemini Mobile Technologies開發的,現在已被歐洲和亞洲的幾家電信運營商所使用。支持的操作系統:與操作系統無關。
10、MongoDB
mongoDB的下載量已超過1000萬人次,是一款極其受歡迎的NoSQL資料庫。MongoDB.com上提供了企業版、支持、培訓及相關產品和服務。支持的操作系統:Windows、Linux、OS X和Solaris。