大數據開發人員到企業幹些什麼工作

應該看公司實際做的事情,每個公司也是叫法各不同。大數據現在相關的職位應該分為三種:開發(後台開發【後台開發又包括平台開發和數據應用開發】和可視化)、數據分析工程師和演算法工程師。

⑵ 做大數據開發工程師有前途嗎

由於大數據屬新興領域,專業人才比較缺乏,高端人才更是企業爭搶的對象。至2025年中國數據專人才缺口將達到屬200萬,但數據人才的供給卻嚴重不足,所以薪資待遇也很好。
影響你薪資的最主要是你的專業水平,以及工作能力,在技術崗位上,都是靠技術吃飯的,你得有拿得出手的能力。
大數據當前正處在落地應用階段,大數據工程師未來的發展空間還是比較大的,薪資待遇在IT行業一直算是比較靠前的,從事大數據相關工作是個不錯的選擇。

java開發和大數據開發的區別在哪兒

其實沒啥區別,都是業務應用開發的工程師,普通的程序員,日常的工作都是調包和調參,要說區別的話,那麼這個開發工程師通常是在spring框架之下活動,大數據應用開發工程師通常是在hadoop框架之下活動吧。

⑷ 大數據開發的流程是怎麼樣的

1:需求:數據的輸入和數據的產出;
2:數據量、處理效率、可靠性、可維護性、簡潔性;
3:數據建模;
4:架構設計:數據怎麼進來,輸出怎麼展示,最最重要的是處理流出數據的架構;
5:再次思考大數據系統和企業IT系統的交互;
6:最終確定選擇、規范等;
7:基於數據建模寫基礎服務代碼
8:正式編寫第一個模塊;
9:實現其它的模塊,並完成測試和調試等;
10:測試和驗收

⑸ 大數據開發能做什麼能開發什麼項目

零售業:主要集中在客戶營銷分析上,通過大數據技術可以對客戶的消費信息進行分析。獲知

客戶的消費習慣、消費方向等,以便商場做好更合理商品、貨架擺放,規劃市場營銷方案、產品推薦手段等。

金融業:在金融行業里頭,數據即是生命,其信息系統中積累了大量客戶的交易數據。通過大數據可以對客戶的行為進行分析、防堵詐騙、金融風險分析等。

醫療業:通過大數據可以輔助分析疫情信息,對應做出相應的防控措施。對人體健康的趨勢分析在電子病歷、醫學研發和臨床試驗中,可提高診斷准確性和葯物有效性等。

製造業:該行業對大數據的需求主要體現在產品研發與設計、供應鏈管理、生產、售後服務等。通過數據分析,在產品研發過程中免除掉一些不必要的步驟,並且及時改善產品的製造與組裝的流程。

⑹ 大數據開發常用的編程語言有哪些

1、Python語言
如果你的數據科學家不使用R,他們可能就會徹底了解Python。十多年來,在學術界當中一直很流行,尤其是在自然語言處理(NLP)等領域。因而,如果你有一個需要NLP處理的項目,就會面臨數量多得讓人眼花繚亂的選擇,包括經典的NTLK、使用GenSim的主題建模,或者超快、准確的spaCy。同樣,說到神經網路,Python同樣游刃有餘,有Theano和Tensorflow;隨後還有面向機器學習的scikit-learn,以及面向數據分析的NumPy和Pandas。
還有Juypter/iPython――這種基於Web的筆記本伺服器框架讓你可以使用一種可共享的日誌格式,將代碼、圖形以及幾乎任何對象混合起來。這一直是Python的殺手級功能之一,不過這年頭,這個概念證明大有用途,以至於出現在了奉行讀取-讀取-輸出-循環(REPL)概念的幾乎所有語言上,包括Scala和R。
Python往往在大數據處理框架中得到支持,但與此同時,它往往又不是「一等公民」。比如說,Spark中的新功能幾乎總是出現在Scala/Java綁定的首位,可能需要用PySpark編寫面向那些更新版的幾個次要版本(對Spark Streaming/MLLib方面的開發工具而言尤為如此)。
與R相反,Python是一種傳統的面向對象語言,所以大多數開發人員用起來會相當得心應手,而初次接觸R或Scala會讓人心生畏懼。一個小問題就是你的代碼中需要留出正確的空白處。這將人員分成兩大陣營,一派覺得「這非常有助於確保可讀性」,另一派則認為,我們應該不需要就因為一行代碼有個字元不在適當的位置,就要迫使解釋器讓程序運行起來。
2、R語言
在過去的幾年時間中,R語言已經成為了數據科學的寵兒——數據科學現在不僅僅在書獃子一樣的統計學家中人盡皆知,而且也為華爾街交易員,生物學家,和矽谷開發者所家喻戶曉。各種行業的公司,例如Google,Facebook,美國銀行,以及紐約時報都使用R語言,R語言正在商業用途上持續蔓延和擴散。
R語言有著簡單而明顯的吸引力。使用R語言,只需要短短的幾行代碼,你就可以在復雜的數據集中篩選,通過先進的建模函數處理數據,以及創建平整的圖形來代表數字。它被比喻為是Excel的一個極度活躍版本。
R語言最偉大的資本是已圍繞它開發的充滿活力的生態系統:R語言社區總是在不斷地添加新的軟體包和功能到它已經相當豐富的功能集中。據估計,超過200萬的人使用R語言,並且最近的一次投票表明,R語言是迄今為止在科學數據中最流行的語言,被61%的受訪者使用(其次是Python,39%)。
3、JAVA
Java,以及基於Java的框架,被發現儼然成為了矽谷最大的那些高科技公司的骨骼支架。 「如果你去看Twitter,LinkedIn和Facebook,那麼你會發現,Java是它們所有數據工程基礎設施的基礎語言,」Driscoll說。
Java不能提供R和Python同樣質量的可視化,並且它並非統計建模的最佳選擇。但是,如果你移動到過去的原型製作並需要建立大型系統,那麼Java往往是你的最佳選擇。
4、Hadoop和Hive
一群基於Java的工具被開發出來以滿足數據處理的巨大需求。Hadoop作為首選的基於Java的框架用於批處理數據已經點燃了大家的熱情。Hadoop比其他一些處理工具慢,但它出奇的准確,因此被廣泛用於後端分析。它和Hive——一個基於查詢並且運行在頂部的框架可以很好地結對工作。

⑺ 大數據開發

目前來講,大數據的hadoop用的比較多。這里的應用的話,開源的過程中比較容易對接資料庫也比較清晰,因此來講是所有大數據研究和開發者或者進一步應用的過程中選擇性最多的一個應用。但是話又講回來仁者見仁智者見智,不同的人針對不同的系統或者針對不同的應用層次或者公司的要求不同,也會導致選擇不同,所謂技多不壓身,如果多學一些技術在身上,在遇到一些技術難題的時候,各有千秋也就能各個融合。

⑻ 學大數據開發有前途嗎

大數據工程技術人員是指從事大數據採集、清洗、分析、治理、挖掘等技術研究,並加以利用、管理、維護和服務的工程技術人員。
大數據技術不僅就業前景明朗,薪資待遇也有著無法比擬的就業優勢。據南方都市報報道,依照職友集薪資數據顯示,全國大數據專業人才就業平均月薪14930元。從主要城市大數據人才數量來看,截至2018年底排名前五的是北京、上海、深圳、杭州、廣州。