統計局大數據平台
❶ 有哪些好的數據來源或者大數據平台
說說免費的吧。
國內的,國家統計局、氣象局、地震局等,還有各級政府正在建設的數據開放中心;
國外的,聯合國、世界衛生組織這些機構的網站上,都可以找到相關的免費共享的數據,有的數據還提供現成的可視化報告。
❷ 大數據分析 做的好的有哪些平台呢
最權威來的當屬NLPIR了。
NLPIR由專注於自大數據科學研究與工程應用融合領域的十多名博士碩士,傾力15年,持續創新而構建,該平台分別獲得了2010年錢偉長中文信息處理科學技術獎一等獎,國際與國內公開第三方的獨立評測綜合第一名。綜合平衡了效果與效率,實現了 「又好又快」的技術追求。
普適優勢
NLPIR提供雲服務,更多的是提供第三方二次開發介面,你無需訪問我們的伺服器,確保自身信息內容的安全性,開發平台兼容當前所有主流的操作系統與開發語言。
經驗優勢
十餘年中,NLPIR先後服務了全球30萬家機構。其中涵蓋了中央網信辦、中國證監會、中國人民銀行、國家統計局、國家氣象局等國家機構,中信信託、華為、人民網、中國移動、中國郵政等大型商業機構,以及中國科學院、清華大學、中國科技信息情報研究所等科研機構。
❸ 國家統計局正研究如何利用大數據 提高統計質量
大數據正成為科博會、京交會上的新熱點,而備受企業推崇的大數據也有望在國家統計工作中大顯身手。國家統計局局長馬建堂近日表示,國家統計局正組織力量研究如何在統計工作中利用大數據。業內分析,統計工作中利用大數據有助於降低調查成本,提高統計的及時性和准確性,可以提高統計質量,減輕外界對於統計數據准確性的質疑,但要想根本解決統計數據的信用危機,還需要改變惟GDP的政績考核體系。 大數據的挑戰 雖然大數據目前沒有統一定義,但市場普遍認為,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理、處理的數據集合。從產業角度,常常把這些數據與採集它們的工具、平台、分析系統一起被稱為大數據。 而大數據的應用已經滲透到日常生活中。專家認為,互聯網上每時每刻生成了大量交易和價格信息,如淘寶網上許許多多的店主開了許許多多的網店,經營著許許多多各種各樣的商品,一個綜合性的淘寶價格指數應運而生,雖然商品種類大大少於CPI,但由於實時產生的大量基礎信息做基礎,會吸引越來越多的人關注,將對政府統計的惟一性乃至權威性產生極大挑戰。這也意味著,隨著大數據時代的到來,政府統計部門不再是惟一的海量數據擁有者。 統計方式的變革 馬建堂此前在全國統計工作會議上強調,大數據時代的來臨,對統計數據的生產方式帶來了很大的挑戰。統計部門要利用海量數據並對其進行標准化處理,發掘這一數據寶庫,認真把握好這一促進政府統計改革發展的難得機遇。 據了解,政府統計一般是在普查掌握總體的基礎上,對一定規模限額以上的單位全額調查,對以下的單位進行抽樣,各級政府統計機構對本地區數據質量各負其責。但符合大數據概念的交易記錄,無論是成交額、成交量,還是各類商品的價格,都是作為一個總體存在。 通過利用客觀存在的海量數據,能夠有效降低調查成本。大數據化的採集方式減少了層層上報環節,有助於提高數據及時性、准確性。同時,通過對海量數據的分析、整理,可以對經濟社會運行情況進行多方面印證,更加真實合理。北京方迪經濟發展研究院副院長趙燕霞說。 一位業內專家舉例稱,比如每月公布的社會消費品零售額數據,除了幾個基礎的分類數據外,還可以對各行業收集的數據具體分析,研究餐飲消費結構、金銀珠寶消費與經濟關系、日用品消費佔比變化等,通過這些可以看出消費趨勢性變化,為擴大內需提供重要的數據支撐。 信任危機的化解 國家統計局表現出的利用大數據傾向,除了順應目前發展趨勢外,也被外界認為將有助挽救目前存在的數據信用危機。近年來,工資被增長、CPI被下降、房價被降低、失業率被減少因百姓的切身感受與統計數據之間的差異,以及國家和地方之間GDP數據嚴重不符,都導致了市場對統計數據的質疑。 統計學專家、中國社科院世界經濟與政治研究所世界經濟統計分析研究室副主任劉仕國認為,大數據要求數據種類越來越多樣化,而且對統計過程透明性也越來越高,從理論上看,這樣可以提高統計調查的准確性、透明性,可以消減民眾對於統計數據的質疑。 (王曄君)
❹ 大數據,政府統計的機遇與挑戰
大數據,政府統計的機遇與挑戰
對於政府統計機構來說,沒有什麼比數據更重要的了。我們研究統計分類標准、統計調查方法、統計數據採集方式、統計數據加工處理方法、統計數據評估技術,都是為了獲取真實准確、完整及時、代表性強、分類科學、經濟適用的統計數據。
大數據時代的到來,既給政府統計帶來重大發展機遇,也帶來嚴峻挑戰。
一、大數據在政府統計中的應用
國家統計局高度重視大數據在政府統計中的應用。到目前為止,已經與17家大數據企業簽訂了戰略合作協議。當然,目前大數據在中國政府統計中的應用仍處於起步階段,主要表現在兩個方面:一是大數據成為政府統計數據的部分資料來源;二是大數據成為政府統計數據質量的部分評估依據。
(一)大數據成為政府統計數據的部分資料來源
目前,大數據已經成為中國政府統計數據的部分資料來源,以下是幾個有代表性的方面:
1.利用重點網上零售交易平台數據測算網上零售額
為了掌握網上零售交易平台的交易規模和結構,綜合測算網上零售數據,從今年1月份開始,國家統計局實施了月度網上零售交易平台調查,調查范圍為42家重點網上零售交易平台,包括京東商城、亞馬遜、當當網、淘寶網、天貓商城、酒仙網、美團網、中糧我買網、國美在線、大眾點評網等。據對上述42家重點網上零售交易平台數據測算,今年1~8月份,全國網上零售額22400.9億元,同比增長36.5%。其中,實物商品網上零售額18653.4億元,增長35.6%,佔全部網上零售額的83.3%;非實物商品網上零售額3747.5億元,增長41.1%,佔全部網上零售額的16.7%。這對於宏觀管理部門和社會公眾了解網上零售情況具有重要的參考作用。
2.利用房屋交易網簽數據計算全國70個大中城市的新建住宅價格指數
房屋交易網簽數據是指買賣雙方簽訂購房合同後,房地產開發企業在房管部門進行備案,並在房產信息網上公布的相關信息,包含地址、樓層、價格、面積和金額等詳細信息,基本涵蓋了當月新建住宅的全部交易情況。從2011年1月份開始,國家統計局開始採用房屋交易網簽數據計算全國70個大中城市的新建住宅價格指數。這對於提高70個大中城市新建住宅價格指數的數據質量起到了重要作用。
3.利用卓創資訊公司提供的價格信息,開展流通領域重要生產資料市場價格監測
國家統計局與卓創資訊公司開展合作,利用該企業提供的價格信息,開展流通領域重要生產資料市場價格監測。從2014年1月開始,按旬共同向社會發布流通領域9大類50種重要生產資料市場價格的檢測結果。行業涵蓋黑色金屬、有色金屬、化工產品、煤炭、石油天然氣、非金屬建材、農產品、農業生產資料、林產品等領域。地區監測范圍覆蓋北京、天津、河北、山西、內蒙古、遼寧、吉林、上海等24個省區市。這對於宏觀管理部門和社會公眾了解流通領域重要生產資料市場價格信息起到了重要作用。
(二)大數據成為政府統計數據質量的部分評估依據
國家統計局除了把大數據作為政府統計數據的部分資料來源外,也高度重視利用大數據評估政府統計數據質量。以下是目前比較有代表性的兩個方面:一是利用中國銀聯跨行銀行卡消費數據評估社會消費品零售總額數據質量;二是利用大型機械裝備企業物聯網數據評估固定資產投資數據質量。
二、大數據給政府統計帶來的機遇與挑戰
對於政府統計來說,大數據既帶來了重大發展機遇,也帶來嚴峻挑戰。
(一)大數據給政府統計帶來重大發展機遇
首先,大數據將不斷提高政府統計服務宏觀管理和社會公眾的能力。隨著大數據的不斷發展和完善,隨著政府統計機構開發應用大數據能力的不斷提升,政府統計產品的種類將會不斷豐富,政府統計數據的質量和時效性將會不斷提升,從而政府統計服務宏觀管理和社會公眾的能力會不斷提高。
其次,大數據將會推動政府統計發生革命性的變化。隨著大數據的發展和完善,隨著政府統計機構開發應用大數據技術的逐步成熟,政府統計將會發生革命性變化。一是現有的以周期性普查為基礎,以抽樣調查為主體,綜合運用全面調查、重點調查等方法,並充分利用行政記錄等資料的統計調查方法體系可能會發生重大變化。長期以來,抽樣調查方法,即在總體中抽選樣本、利用樣本推算總體的方法;普查和全面調查方法,即對總體中所有單位逐一進行調查的方法,在我國政府統計中發揮了重要作用。今後,在較長的時期內這些方法仍然會被政府統計所廣泛採用。但在大數據不斷發展和完善的情況下,某些領域、某些方面的大數據可能會取代抽樣調查、普查和全面調查方法,成為獲取統計數據的重要方法,而且這種獲取統計數據的方法將會變得越來越重要。二是政府統計中的數據採集方式可能會發生重大變化。長期以來,政府統計機構主要以企業填報、住戶記賬、調查員入戶等方式採集原始數據。在大數據不斷發展和完善的情況下,一部分原始數據將通過挖掘大數據的方式獲取,而且這種新的數據採集方式將會變得越來越重要。三是政府統計的數據處理模式可能會發生重大變化。在大數據不斷發展和完善的情況下,現行的對普查和全面調查數據進行直接審核、匯總、加工處理和對抽樣調查數據進行推算放大的數據處理模式可能會發生重大變化。
(二)大數據給政府統計帶來嚴峻挑戰
首先,大數據對政府統計能力帶來挑戰。從大數據本身的產生到發展完善,從政府統計對大數據的初步運用到成熟運用,需要一個較長的時期。在這個過程中,一方面,政府統計中傳統的統計調查方法、數據採集方式和數據處理模式將繼續運行,否則滿足不了宏觀管理和社會公眾的需求。另一方面,政府統計系統必須投入大量的人力和物力對大數據進行挖掘、加工處理和運用,否則也適應不了大數據時代宏觀管理和社會公眾的需求。這種雙軌運行的模式,對政府統計能力將是一個巨大的挑戰。
其次,大數據對傳統政府統計理念帶來挑戰。傳統的政府統計有一個約定俗成的理念:抽樣調查方法可降低調查成本,提高效率和數據質量。因為抽樣調查只對總體中部分抽中的樣本進行調查,並非對總體中的每一個單位都進行調查,所以調查單位明顯減少,可降低成本,節約時間,提高效率。同時,由於調查單位較少,政府統計機構有能力對基層統計調查人員進行較為扎實的培訓和指導,有精力對統計調查數據進行較為嚴格的檢查和審核,從而能夠提高統計調查數據質量。隨著大數據不斷發展完善,政府統計機構將會越來越多地通過大數據企業間接地獲取統計數據,不需要對總體中的具體單位進行直接調查,不需要調查員,從而也不需要對調查員進行培訓,抽樣調查所具有的調查成本低、能夠提高統計調查數據質量的優點就不復存在了。
❺ 統計局每百戶手機數怎麼統計出來的
回答:您好肯定是通過通訊公司的,電信移動聯通三家公司的信息統計起來又方便又准確。通過手機銷量等等統計數據,這是推測,不準確。希望我的答案可以幫到您,給個點贊吧謝謝!
❻ 網路大數據在什麼地方獲取
網路大數據獲取的地方有(在法律范圍內,獲取公開數據):
社區、論壇、微博、知乎、FACEBOOK、Twitter、Ins等社交媒體
網路、搜狗、360、谷歌、必應、雅虎等搜索引擎
美團、大眾點評、58同城、趕集網等信息分類網站
企查查、天眼查等企業工商信息API
智聯、BooS直聘、拉勾、中華英才、領英等招聘網站
阿里巴巴、慧聰、商業新知、軟服之家等ToB類平台或行業網站
公共數據開放網站:
政府數據開放平台
北京市政務數據資源網、上海市政府數據服務網、天津市信息資源統一開放平台、開放廣東、浙江政務服務網「數據開放」專題網站、武漢市政務公開數據服務網、長沙市政府門戶網站數據開放平台、蘇州市政府數據開放平台、成都市公共數據開放平台、數據開放--四川省人民政府網站……
國家相關部門統計信息網站
中國人民銀行、中國銀行業監督管理委員會、中國證券監督管理委員會、中國銀保險監督管理委員會、中國國家統計局……
國外數據開放網站
紐約政府開放數據平台、美國官網數據超市、新加坡政府開放數據平台、休斯頓市開放數據門戶網站、Academic Torrents、hadoopilluminated.com、美國人口普查局、世界銀行開放數據搜索網站、費城開放數據平台……
資源節選自:
【Open Data】國外開放數據中心及政府數據開放平台匯總
最全的中國開放數據(open data)及政府數據開放平台匯總
❼ 大數據分析平台那家好,有給推薦個比較好的平台。
最權威的當屬NLPIR了。
NLPIR由專注於大數據科學研究與工程應用融合領域的十多名博士碩士,傾力15年,持續創新而構建,該平台分別獲得了2010年錢偉長中文信息處理科學技術獎一等獎,國際與國內公開第三方的獨立評測綜合第一名。綜合平衡了效果與效率,實現了 「又好又快」的技術追求。
普適優勢
NLPIR提供雲服務,更多的是提供第三方二次開發介面,你無需訪問我們的伺服器,確保自身信息內容的安全性,開發平台兼容當前所有主流的操作系統與開發語言。
經驗優勢
十餘年中,NLPIR先後服務了全球30萬家機構。其中涵蓋了中央網信辦、中國證監會、中國人民銀行、國家統計局、國家氣象局等國家機構,中信信託、華為、人民網、中國移動、中國郵政等大型商業機構,以及中國科學院、清華大學、中國科技信息情報研究所等科研機構。
❽ 怎麼在中國國家統計局,查不到自己想要的數據一般都是啥數據放上面啊
你能看到的數據都比較官方 中國有句話 報喜不報憂 所以你看到的 都是比較保守的 實在不好的 是不會公開的 你要大數據的話 就看看中央2台 小數據 自己研究吧 反正統計局的 不要完全信
❾ 各行業的統計數據去哪裡查看
這個很難很難找得到,你首先應該去查下 各個地方統計局網站或者國家統計局官方網站,一般每年統計局統計年鑒都會對一些大類行業進行統計,不過他們的統計行業類別比較宏觀
其次 就是找對應的行業協會去了解下看是否有相應的行業統計了
其他的可能就是一些專業的第三方調查公司的統計數據,但是准確性不好確定
❿ 大數據技術平台有哪些
java:只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰溜溜的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接收方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。