大數據起始計量單位
❶ 大數據時代有哪些主要特點
最早提出"大數據"時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:"數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。"
"大數據"在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
1.數據量大
大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
2.類型繁多
包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
3.價值密度低
如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
4.速度快、時效高
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
既有的技術架構和路線,已經無法高效處理如此海量的數據,而對於相關組織來說,如果投入巨大採集的信息無法通過及時處理反饋有效信息,那將是得不償失的。可以說,大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。[6]
❷ 大數據產生的背景哪些
「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,近年來互聯網和信息行業的發展而引起人們關注。
隨著計算機和信息技術的迅猛發展和普及應用,行業應用系統的規模迅速擴大,行業應用所產生的數據呈爆炸性增長。
動輒達到數百TB甚至數十至數百PB規模的行業,企業大數據已遠遠超出了現有傳統的計算技術和信息系統的處理能力,因此,尋求有效的大數據處理技術、方法和手段已經成為現實世界的迫切需求。
人們將越來越多的意識到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
(2)大數據起始計量單位擴展閱讀:
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
隨著雲時代的來臨,大數據(Big
data)也吸引了越來越多的關注。大數據(Big
data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
❸ 大數據4v是指哪四個
大數據的4V,就是「容量大Volume」「多樣性Variety」「價值高Value」「速度快Velocity」
現在已經有5V了版
一、Volume:數據量大,包括權採集、存儲和計算的量都非常大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
二、Variety:種類和來源多樣化。包括結構化、半結構化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
三、Value:數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
四、Velocity:數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
五、Veracity:數據的准確性和可信賴度,即數據的質量。
❹ 大數據學什麼
大家經常聽到「大數據」這個詞,彷彿帶了一個「大」字我們就難以理解其中的含義。那麼,大數據是什麼意思呢?
大數據又稱巨量數據集合,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據是什麼意思?
大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大家經常聽到「大數據」這個詞,彷彿帶了一個「大」字我們就難以理解其中的含義。那麼,大數據是什麼意思呢?
大數據又稱巨量數據集合,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據特點
業界將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:
一,數據體量巨大。
大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
二,數據類型繁多。
比如,網路日誌、視頻、圖片、地理位置信息等等。
三,價值密度低,商業價值高。
四,處理速度快。
末尾這一點也是和傳統的數據挖掘技術有著本質的不同。供參考。
❺ 大數據究竟是什麼
大數據究竟是什麼?怎樣認識並讀懂大數據(1)
大數據究竟是什麼?怎樣認識並讀懂大數據?身邊很多IT人對於這些熱門的新技術、新趨勢往往趨之若鶩卻又很難說的透徹,如果你問他大數據和你有什麼關系?估計很少能說出一二三來。究其原因,一是因為大家對新技術有著相同的原始渴求,至少知其然在聊天時不會顯得很「土鱉」;二是在工作和生活環境中真正能參與實踐大數據的案例實在太少了,所以大家沒有必要花時間去知其所以然。
如果你說大數據就是數據大,或者侃侃而談4個V,也許很有深度的談到BI或預測的價值,又或者拿Google和Amazon舉例,技術流可能會聊起Hadoop和Cloud Computing,不管對錯,只是無法勾勒對大數據的整體認識,不說是片面,但至少有些管窺蠡測、隔衣瘙癢了。……也許,「解構」是最好的方法。
怎樣結構大數據?
首先,我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
大數據相關的理論
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
其實這些V並不能真正說清楚大數據的所有特徵,下面這張圖對大數據的一些相關特性做出了有效的說明。
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
價值探討
大數據是什麼?投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。
如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」
。
Target 超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確的推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對的在每個懷孕顧客的不同階段寄送相應的產品優惠卷。
Target的例子是一個很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個很有指導意義的觀點:通過找出一個關聯物並監控它,就可以預測未來。Target通過監測購買者購買商品的時間和品種來准確預測顧客的孕期,這就是對數據的二次利用的典型案例。如果,我們通過採集駕駛員手機的GPS數據,就可以分析出當前哪些道路正在堵車,並可以及時發佈道路交通提醒;通過採集汽車的GPS位置數據,就可以分析城市的哪些區域停車較多,這也代表該區域有著較為活躍的人群,這些分析數據適合賣給廣告投放商。
❻ 大數據的4V+1O指的是什麼
大數據的特徵(4V+1O):
數據量大(Volume)。第一個特徵是數據量大,包括採集、存儲和計算的量都非常大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)。第二個特徵是種類和來源多樣化。包括結構化、半結構化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)。第三個特徵是數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
速度快時效高(Velocity)。第四個特徵數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
數據是在線的(Online)。數據是永遠在線的,是隨時能調用和計算的,這是大數據區別於傳統數據最大的特徵。現在我們所談到的大數據不僅僅是大,更重要的是數據變的在線了,這是互聯網高速發展背景下的特點。比如,對於打車工具,客戶的數據和出租司機數據都是實時在線的,這樣的數據才有意義。如果是放在磁碟中而且是離線的,這些數據遠遠不如在線的商業價值大。
❼ 「大數據」,就是很「大」的數據么
大數據技術是指在巨量的數據資源中提取到有用的部分加以分析和處理,大數據技術的特點是:
數據量大(Volume)。第一個特徵是數據量大,包括採集、存儲和計算的量都非常大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)。第二個特徵是種類和來源多樣化。包括結構化、半結構化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)。第三個特徵是數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
速度快時效高(Velocity)。第四個特徵數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
❽ 什麼是大數據時代
大數據時代是數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。
「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在,卻因為來自互聯網和信息行業的發展而引起人們關注。
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數大數據時代來臨據,並命名與之相關的技術發展與創新。
大數據時代已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。
(8)大數據起始計量單位擴展閱讀:
大數據時代特徵:
1、數據量大(Volume)
第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
2、類型繁多(Variety)
第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
3、價值密度低(Value)
第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
4、速度快、時效高(Velocity)
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
❾ 「大數據(Big Data)」一詞為什麼變得無人知曉
那是因為數據現在集中在了高薪行業,而現在的很多平民只是在圍繞著實體銷售這一塊,就算是她們接觸,她們也不知道自己運用的東西就是大數據。
特點:
1、第一,數據體量巨大。從TB級別,躍升到PB級別。
2、第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。
3、第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、第四,處理速度快。1秒定律。
❿ 什麼是「大數據」的真正含義
如果你說大數據就是數據大,或者侃侃而談4個V,也許很有深度的談到BI或預測的價值,又或者拿Google和Amazon舉例,技術流可能會聊起Hadoop和Cloud Computing,不管對錯,只是無法勾勒對大數據的整體認識,不說是片面,但至少有些管窺蠡測、隔衣瘙癢了。也許,「解構」是最好的方法。
怎樣結構大數據?
首先,大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我們著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論?
1、 特徵定義
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。