A. 大數據的特點主要有什麼

大數據的主要特點有:

准確(Veracity)

這是一個在討論大數據時時常被忽略的一個屬性,部分原因是這個屬性相對來說比較新,盡管它與其他的屬性同樣重要。這是一個與數據是否可靠相關的屬性,也就是那些在數據科學流程中會被用於決策的數據(而這不同於與傳統的數據分析流程),精確性與信噪比(signal-to-noise ratio)有關。

例如,在大數據中發現哪些數據對商業是真正有效的,這在信息理論中是個十分重要的概念。由於並不是所有的數據源都具有相等的可靠性,在這個過程中,大數據的精確性會趨於變化,如何增加可用數據的精確性是大數據的主要挑戰。

高速(Velocity)

大數據是在運動著的,通常處於很高的傳輸速度之下。它經常被認為是數據流,而數據流通常是很難被歸檔的(考慮到有限的網路存儲空間,單單是高速就已經是一個巨大的問題)。這就是為什麼只能收集到數據其中的某些部分。如果我們有能力收集數據的全部,長時間存儲大量數據也會顯得非常昂貴,所以周期性的收集數據遺棄一部分數據以節省空間,僅保留數據摘要(如平均值和方差)。 這個問題在未來會顯得更為嚴重,因為越來越多的數據正以越來越快的速度所產生。

體量(Volume)

大數據由大量數據組成,從幾個TB到幾個ZB。這些數據可能會分布在許多地方,通常是在一些連入網際網路的計算網路中。

一般來說,凡是滿足大數據的幾個V的條件的數據都會因為太大而無法被單獨的計算機處理。單單這一個問題就需要一種不同的數據處理思路,這也使得並行計算技術(例如MapRece)得以迅速崛起。

多樣(Variety)

在過去,數據或多或少是同構的,這種特點也使得它更易於管理。這種情況並不出現在大數據中,由於數據的來源各異,因此形式各異。這體現為各種不同的數據結構類型,半結構化以及完全非結構化的數據類型。

B. 大數據的結構是什麼

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

C. 相比於傳統數據結構,以下哪些數據結構是大數據所特有的

1.演算法的概念、演算法時間復雜度及空間復雜度的概念
2.數據結構的定義、數據邏輯結構及物理結構的定義
3.棧的定義及其運算、線性鏈表的存儲方式
4.樹與二叉樹的概念、二叉樹的基本性質、完全二叉樹的概念、二叉樹的遍歷
5.二分查找法
6.冒泡排序法

D. 什麼是大數據以及大數據的特性有哪些

大數據技術是指從各種各樣海量類型的數據中,快速獲得有價值信息的能內力。適用於大數據容的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。

大數據具備以下4個特性:

一是數據量巨大。例如,人類生產的所有印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。

二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。

三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。

四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。

E. 有一個大數據量的ip庫,用什麼數據結構存儲效率比較高

有很多個ip地址 採用什麼數據結構存儲 可以快速的查詢 內存有限
哈希表是可以的
-

F. 如何正確建立大數據結構

大數據各行各業的企業都提供了潛力。正確使用這些大數據信息可能將增加商業價值,幫助您的企業從市場競爭中脫穎而出。如下是幾個企業成功應用大數據的案例: 大數據的例子 汽車製造商已經開始使用大數據來了解汽車何時需要返回到車庫進行維修。使用汽車發動機的數百個感測器,可以為汽車製造商發送實時的數據信息,這使得製造商甚至比駕駛汽車的司機還要提前知道汽車何時會出現故障。卡車製造商開始使用大數據,基於實時交通條件和客戶的需求來改進他們的路由,從而節約燃料和時間。 零售業也開始越來越多的使用大數據,鑒於越來越多的產品均有一個RFID標簽能幫助零售商跟蹤產品,知道很少某種產品庫存缺貨,並及時向供貨商訂購新產品。沃爾瑪便是這正確利用大數據這方面的一個很好的例子。當零售商開始識別他們的客戶時,就能夠更好地建立商店,更好的滿足客戶的需求。 當然,上述這些只是幾個淺顯的例子,大數據的可能性幾乎是無止境的。不久的將來,我們將討論在大數據平台上的最佳實踐。知道大數據能夠提供商業價值是一回事;而企業要知道如何創建正確的架構則又是另一回事了。 大數據結構 大數據有三個特徵,使得大數據不同於現有的數據倉庫和商業智能。大數據的這三大特點是: 數據量龐大:大數據的數據量相當龐大,更多的時候大數據的數據量可以達到比數TB到PB級位元組。 高速度傳遞:所有這些TB和PB位元組的數據能夠實時交付,數據倉庫每天都需要應付如此高速的數據流。

G. 「大數據」跟大學生所學的數據結構有什麼關系

沒有什麼關系,大數據是是指數據的范圍很大,二而數據結構是指演算法

H. 大數據處理技術這門課程第六章海量數據結構的知識點有哪些

大數據處理技術這門課第六章海量數據結構的知識點包含章節導引,第一部分倒排索引,第二部分Trie樹,第三部分BloomFilter,第四部分跳躍表,第五部分MD5,。

I. 什麼是大數據,看完這篇就明白了

什麼是大數據

如果從字面上解釋的話,大家很容易想到的可能就是大量的數據,海量的數據。這樣的解釋確實通俗易懂,但如果用專業知識來描述的話,就是指數據集的大小遠遠超過了現有普通資料庫軟體和工具的處理能力的數據。

大數據的特點

海量化

這里指的數據量是從TB到PB級別。在這里順帶給大家科普一下這是什麼概念。

MB,全稱MByte,計算機中的一種儲存單位,含義是「兆位元組」。

1MB可儲存1024×1024=1048576位元組(Byte)。

位元組(Byte)是存儲容量基本單位,1位元組(1Byte)由8個二進制位組成。

位(bit)是計算機存儲信息的最小單位,二進制的一個「0」或一個「1」叫一位。

通俗來講,1MB約等於一張網路通用圖片(非高清)的大小。

1GB=1024MB,約等於下載一部電影(非高清)的大小。

1TB=1024GB,約等於一個固態硬碟的容量大小,能存放一個不間斷的監控攝像頭錄像(200MB/個)長達半年左右。

1PB=1024TB,容量相當大,應用於大數據存儲設備,如伺服器等。

1EB=1024PB,目前還沒有單個存儲器達到這個容量。

多樣化

大數據含有的數據類型復雜,超過80%的數據是非結構化的。而數據類型又分成結構化數據,非結構化數據,半結構化數據。這里再對三種數據類型做一個分類科普。

①結構化數據

結構化的數據是指可以使用關系型資料庫(例如:MySQL,Oracle,DB2)表示和存儲,表現為二維形式的數據。一般特點是:數據以行為單位,一行數據表示一個實體的信息,每一行數據的屬性是相同的。所以,結構化的數據的存儲和排列是很有規律的,這對查詢和修改等操作很有幫助。

但是,它的擴展性不好。比如,如果欄位不固定,利用關系型資料庫也是比較困難的,有人會說,需要的時候加個欄位就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結構變更是非常痛苦的,這也容易導致後台介面從資料庫取數據出錯。你也可以預先設定大量的預備欄位,但這樣的話,時間一長很容易弄不清除欄位和數據的對應狀態,即哪個欄位保存有哪些數據。

②半結構化數據

半結構化數據是結構化數據的一種形式,它並不符合關系型資料庫或其他數據表的形式關聯起來的數據模型結構,但包含相關標記,用來分隔語義元素以及對記錄和欄位進行分層。因此,它也被稱為自描述的結構。半結構化數據,屬於同一類實體可以有不同的屬性,即使他們被組合在一起,這些屬性的順序並不重要。常見的半結構數據有XML和JSON。

③非結構化數據

非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、各類報表、圖像和音頻/視頻信息等等。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。所以存儲、檢索、發布以及利用需要更加智能化的IT技術,比如海量存儲、智能檢索、知識挖掘、內容保護、信息的增值開發利用等。

快速化

隨著物聯網、電子商務、社會化網路的快速發展,全球大數據儲量迅猛增長,成為大數據產業發展的基礎。根據國際數據公司(IDC)的監測數據顯示,2013年全球大數據儲量為4.3ZB(相當於47.24億個1TB容量的移動硬碟),2014年和2015年全球大數據儲量分別為6.6ZB和8.6ZB。近幾年全球大數據儲量的增速每年都保持在40%,2016年甚至達到了87.21%的增長率。2016年和2017年全球大數據儲量分別為16.1ZB和21.6ZB,2018年全球大數據儲量達到33.0ZB。預測未來幾年,全球大數據儲量規模也都會保持40%左右的增長率。在數據儲量不斷增長和應用驅動創新的推動下,大數據產業將會不斷豐富商業模式,構建出多層多樣的市場格局,具有廣闊的發展空間。

核心價值

大數據的核心價值,從業務角度出發,主要有如下的3點:

a.數據輔助決策:為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策;

b.數據驅動業務:通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務,等等。

c.數據對外變現:通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務,等等。

大數據能做什麼?

1、海量數據快速查詢(離線)

能夠在海量數據的基礎上進行快速計算,這里的「快速」是與傳統計算方案對比。海量數據背景下,使用傳統方案計算可能需要一星期時間。使用大數據 技術計算只需要30分鍾。

2.海量數據實時計算(實時)

在海量數據的背景下,對於實時生成的最新數據,需要立刻、馬上傳遞到大數據環境,並立刻、馬上進行相關業務指標的分析,並把分析完的結果立刻、馬上展示給用戶或者領導。

3.海量數據的存儲(數據量大,單個大文件)

大數據能夠存儲海量數據,大數據時代數據量巨大,1TB=1024*1G 約26萬首歌(一首歌4M),1PB=1024 * 1024 * 1G約2.68億首歌(一首歌4M)

大數據能夠存儲單個大文件。目前市面上最大的單個硬碟大小約為10T左右。若有一個文件20T,將 無法存儲。大數據可以存儲單個20T文件,甚至更大。

4.數據挖掘(挖掘以前沒有發現的有價值的數據)

挖掘前所未有的新的價值點。原始企業內數據無法計算出的結果,使用大數據能夠計算出。

挖掘(演算法)有價值的數據。在海量數據背景下,使用數據挖掘演算法,挖掘有價值的指標(不使用這些演算法無法算出)

大數據行業的應用?

1.常見領域

2.智慧城市

3.電信大數據

4.電商大數據

大數據行業前景(國家政策)?

2014年7月23日,國務院常務會議審議通過《企業信息公示暫行條例(草案)》

2015年6月19日,國家大大、總理同時就「大數據」發表意見:《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》

2015年8月31日,國務院印發《促進大數據發展行動綱要》。國發〔2015〕50號

2016年12月18日,工業和信息化部關於印發《大數據產業發展規劃》

2018年1月23日。中央全面深化改革領導小組會議審議通過了《科學數據管理辦法》

2018年7月1日,國務院辦公廳印發《關於運用大數據加強對市場主體服務和監管的若干意見》

2019年政府工作報告中總理指出「深化大數據、人工智慧等研發應用,培育新一代信息技術、高端裝備、生物醫葯、新能源汽車、新材料等新興產業集群,壯大數字經濟。」

總結

我國著名的電商之父,阿里巴巴創始人馬雲先生曾說過,未來10年,乃至20年,將是人工智慧的時代,大數據的時代。對於現在正在學習大數據的我們來說,未來對於我們更是充滿了各種機遇與挑戰。

python學習網,大量的免費python視頻教程,歡迎在線學習!