1. 大數據應用潛力,醫療大數據的實踐又有哪些

現在的時代可以成為大數據時代。大數據時代的下的我們能更好地生活,與此同時,我們的生活方式也被大數據改變。數據基本上能跟任何行業進行互動,也可以說數據對每個領域來說都起到了推動性的作用,因為在數據驅動之下,各類領域就會根絕要求去改善自身的服務,提高產品的質量,這樣就能更好地滿足客戶的需求。大數據在醫療領域的應用也是很明顯。

雖然說大數據是一個數據的收集,對於個體還是不太具有針對性的。但是,大數據對我們的生活真的是起到了一個積極的作用。不過,即使醫療手段再先進,我們還是要保護好身體,不要生病。

2. 大數據時代,醫院如何應對

數據時代,應該算網路信息快速發展的時代。對於醫院而言,首先還是醫院根本的問題?技術實力,然後通過網路去展示自己的實力!!

3. 請分析大數據在醫療行業的應用中面臨的挑戰有哪些方面

1、數據質量
目前醫療數據的來源主要為醫療機構(例如醫院、醫學葯學實驗室、醫療康復中心等)和互聯網。採集的數據范 圍廣、維度高、類型種類繁多且不針對 特定的問題。
2、不確定性的度量問題
目前比較成熟且進入實用階段的大數 據模型多數都是面向葯廠和保險公司的。美國的醫療大數據應用中,面向醫生和患 者業務通常較難,很難找到合適的切入點。面向企業的業務相對容易,尤其是針對保 險公司和葯廠,而醫院則相對難一些。由於大數據模型精度有限,在安全性要求極 高的醫院和醫生中其實用價值非常有限,例如,一個95%准確度的模型對醫生來說可能仍然不夠精確,因為醫生在決策時是針對患者個體的,而不是基於統計意義的。
另外,統計學習模型的可解釋性也較差,往往只有統計學家和計算機科學家才能精確完整地解釋模型,而對於模型真正的使用者如醫生和政府官員等存在巨大的障礙。

4. 醫療健康大數據創業,還有哪些機遇與挑戰

醫療健康是中國老百姓十分關心的問題,除了公立醫院外,現在民營醫院的醫療制內度也逐漸走上正軌,得容到了很多患者的認可。為此,許多執業醫師可以有更多的創業機會,尤其是對於有多年醫療經驗和醫學研究領域的醫生們,可以說是機遇與挑戰並存。
既要面臨公立醫院的醫療硬體設施更完善,醫療制度更健全,醫療保險等優勢的挑戰,又要從自身的醫療技術,醫療服務來出發,進行更進一步的研究和打造,所以說現在的醫療健康行業仍有很大的挑戰。

5. 大數據是怎麼產生的 它的商業機會在哪

大數據是怎麼產生的 它的商業機會在哪

近些年,大數據已經和雲計算一樣,成為時代的話題。大數據是怎麼產生的,商業機會在哪?研究機會在哪?這個概念孕育著一個怎樣的未來?

昨天在車庫咖啡參加了一個小型的研討活動,就這些問題進行了一些討論,我結合自己的一些理解做一個總結。

首先,大數據是怎麼產生的?

1)物理世界的信息大量數字化產生的

例如劉江老師指出的好大夫網,將醫生的信息,門診的信息等數字化。其實還有很多,比如新浪微博將茶館聊天的行為(弱關系產生信息數字化),朋友聊天的行為數字化(強關系產生信息數字化)。視頻監控探頭將圖像數字化。

2)社交網路產生的

在雅虎時代,大量的都是讀操作,只有雅虎的編輯做一些寫操作的工作。進入web2.0時代,用戶數大量增加,用戶主動提交了自己的行為。進入了社交時代,移動時代。大量移動終端設備的出現,用戶不僅主動提交自己的行為,還和自己的社交圈進行了實時的互動,因此數據大量的產生出來,並且具有了極其強烈的傳播性。

3)數據都要保存所產生的

一位嘉賓指出,舊金山大橋保留了百年的歷史數據,在時間跨度上產生了價值,很多網站在早期對數據的重視程度不夠,保存數據的代價很大,存儲設備的價格昂貴,但是時代變了,存儲設備便宜了,用戶自己產生的數據得到了重視,數據的價值被重視了。因此越來越多的數據被持續保存

其次,大數據和大規模數據的區別?

big data之前學術界叫very large data,大數據和大規模數據的差距是什麼?我認為在英文中large的含義只是體積上的,而big的含義還包含重量上的,價值量上的。因此我認為

1)大數據首先不是數量上的堆砌,而是具有很強的關聯性結構性

比如有一種數據,記錄了世界上每一顆大樹每年長高的程度,這樣的數據不具有價值,因為只是簡單堆砌。

如果數據變成,每一個大樹記錄它的,地點,氣候條件,樹種,樹齡,周邊動植物生態,每年長高的高度,那麼這個數據就具有了結構性。具有結構性的數據首先具有極強的研究價值,其次極強的商業價值。

在比如,淘寶的數據,如果只記錄一個交易的買家,賣家,成交物品,價格等信息,那麼這個商業價值就很有限。淘寶包含了,買家間的社交關系,購物前後的其他行為,那麼這個數據將非常有價值。

因此,只有立體的,結構性強的數據,才能叫大數據,才有價值,否則只能叫大規模數據。

2)大數據的規模一定要大,而且比大規模數據的規模還要大

要做一些預測模型需要很多數據,訓練語料,如果數據不夠大,很多挖掘工作很難做,比如點擊率預測。最直白的例子,如果你能知道一個用戶的長期行蹤數據,上網的行為,讀操作和寫操作。那麼幾乎可以對這個人進行非常精準的預測,各種推薦的工作都能做到很精準。

最後,大數據的機會在哪裡?對小公司的機會在哪?

圍繞數據的整個產業鏈上,我認為具有以下機會

1)數據的獲得

大量數據的獲得,這個機會基本屬於新浪微博等這類大企業,大量交易數據的獲得,也基本屬於京東,淘寶這類企業。小企業基本沒機會獨立得到這些用戶數據。

2)數據的匯集

例如如果你要能把各大廠商,各大微博,政府各個部門的數據匯集全,這個機會將是極大的。

但,這個工作,做大了需要政府行為,做中檔了,要企業間合作,做小了,也許就是一個聯盟或者一個民間組織,比如中國爬盟。

3)數據的存儲

匯集了數據後,立即遇到的問題就是存儲,這個代價極大,原始數據不能刪除,需要保留。因此提供存儲設備的公司,執行存儲這個角色的公司,都具有巨大的市場機會,但是這也不屬於小公司,或者早期創業者。

4)數據的運算

在存儲了數據以後,怎麼把數據分發是個大問題,各種API,各種開放平台,都是將這些數據發射出去,提供後續的挖掘和分析工作,這個也需要有大資本投入,也不適合小公司。

5)數據的挖掘和分析

數據需要做增值服務,否則數據就沒有價值,big也big不到哪裡去,是沒有價值的big。因此這種數據分析和挖掘工作具有巨大的價值,這個機會屬於小公司,小團體。

6)數據的使用和消費

在數據做到了很好的挖掘和分析後,需要把這些結果應用在一個具體的場合上,來獲得回報,做數據挖掘和分析的公司,必須得找到這些金主才行,而這些金主肯定也不是小公司。

大數據未來的形態,或者產業鏈結構一定是分層的,巨大的,價值的體現發生在各個層次,每個層次都是生態鏈的重要一環,都孕育著巨大的機遇和挑戰,我們能做的唯有努力,做適合自己的工作。

以上是小編為大家分享的關於大數據是怎麼產生的 它的商業機會在哪的相關內容,更多信息可以關注環球青藤分享更多干貨

6. 請分析一下大數據在醫療行業的應用中面臨的挑戰有哪些

1、數據質量

目前醫療數據的來源主要為醫療機構(例如醫院、醫學葯學實驗室、醫療康復中心等)和互聯網。採集的數據范 圍廣、維度高、類型種類繁多且不針對 特定的問題。

2、不確定性的度量問題

目前比較成熟且進入實用階段的大數 據模型多數都是面向葯廠和保險公司的。美國的醫療大數據應用中,面向醫生和患 者業務通常較難,很難找到合適的切入點。面向企業的業務相對容易,尤其是針對保 險公司和葯廠,而醫院則相對難一些。由於大數據模型精度有限,在安全性要求極 高的醫院和醫生中其實用價值非常有限,例如,一個95%准確度的模型對醫生來說可能仍然不夠精確,因為醫生在決策時是針對患者個體的,而不是基於統計意義的。

另外,統計學習模型的可解釋性也較差,往往只有統計學家和計算機科學家才能精確完整地解釋模型,而對於模型真正的使用者如醫生和政府官員等存在巨大的障礙。

7. 大數據在醫療行業的應用有哪些

大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。

8. 醫療大數據的分析和挖掘發展現狀如何未來會有什麼樣的應用前景

如今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1) 數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2) 如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3) 如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。

9. 大數據的商業機會在哪

大數據的商業機會在哪
近些年,大數據已經和雲計算一樣,成為時代的話題。大數據是怎麼產生的,商業機會在哪?研究機會在哪?這個概念孕育著一個怎樣的未來?

昨天在車庫咖啡參加了一個小型的研討活動,就這些問題進行了一些討論,我結合自己的一些理解做一個總結。
首先,大數據是怎麼產生的?
1)物理世界的信息大量數字化產生的
例如劉江老師指出的好大夫網,將醫生的信息,門診的信息等數字化。其實還有很多,比如新浪微博將茶館聊天的行為(弱關系產生信息數字化),朋友聊天的行為數字化(強關系產生信息數字化)。視頻監控探頭將圖像數字化。
2)社交網路產生的
在雅虎時代,大量的都是讀操作,只有雅虎的編輯做一些寫操作的工作。進入web2.0時代,用戶數大量增加,用戶主動提交了自己的行為。進入了社交時代,移動時代。大量移動終端設備的出現,用戶不僅主動提交自己的行為,還和自己的社交圈進行了實時的互動,因此數據大量的產生出來,並且具有了極其強烈的傳播性。
3)數據都要保存所產生的
一位嘉賓指出,舊金山大橋保留了百年的歷史數據,在時間跨度上產生了價值,很多網站在早期對數據的重視程度不夠,保存數據的代價很大,存儲設備的價格昂貴,但是時代變了,存儲設備便宜了,用戶自己產生的數據得到了重視,數據的價值被重視了。因此越來越多的數據被持續保存。
其次,大數據和大規模數據的區別?
big data之前學術界叫very large data,大數據和大規模數據的差距是什麼?我認為在英文中large的含義只是體積上的,而big的含義還包含重量上的,價值量上的。因此我認為:
1)大數據首先不是數量上的堆砌,而是具有很強的關聯性結構性。
比如有一種數據,記錄了世界上每一顆大樹每年長高的程度,這樣的數據不具有價值,因為只是簡單堆砌。
如果數據變成,每一個大樹記錄它的,地點,氣候條件,樹種,樹齡,周邊動植物生態,每年長高的高度,那麼這個數據就具有了結構性。具有結構性的數據首先具有極強的研究價值,其次極強的商業價值。
在比如,淘寶的數據,如果只記錄一個交易的買家,賣家,成交物品,價格等信息,那麼這個商業價值就很有限。淘寶包含了,買家間的社交關系,購物前後的其他行為,那麼這個數據將非常有價值。
因此,只有立體的,結構性強的數據,才能叫大數據,才有價值,否則只能叫大規模數據。
2)大數據的規模一定要大,而且比大規模數據的規模還要大。
要做一些預測模型需要很多數據,訓練語料,如果數據不夠大,很多挖掘工作很難做,比如點擊率預測。最直白的例子,如果你能知道一個用戶的長期行蹤數據,上網的行為,讀操作和寫操作。那麼幾乎可以對這個人進行非常精準的預測,各種推薦的工作都能做到很精準。 最後,大數據的機會在哪裡?對小公司的機會在哪?
圍繞數據的整個產業鏈上,我認為具有以下機會:
1)數據的獲得
大量數據的獲得,這個機會基本屬於新浪微博等這類大企業,大量交易數據的獲得,也基本屬於京東,淘寶這類企業。小企業基本沒機會獨立得到這些用戶數據。
2)數據的匯集
例如如果你要能把各大廠商,各大微博,政府各個部門的數據匯集全,這個機會將是極大的。
但,這個工作,做大了需要政府行為,做中檔了,要企業間合作,做小了,也許就是一個聯盟或者一個民間組織,比如中國爬盟。
3)數據的存儲
匯集了數據後,立即遇到的問題就是存儲,這個代價極大,原始數據不能刪除,需要保留。因此提供存儲設備的公司,執行存儲這個角色的公司,都具有巨大的市場機會,但是這也不屬於小公司,或者早期創業者。
4)數據的運算
在存儲了數據以後,怎麼把數據分發是個大問題,各種API,各種開放平台,都是將這些數據發射出去,提供後續的挖掘和分析工作,這個也需要有大資本投入,也不適合小公司。
5)數據的挖掘和分析
數據需要做增值服務,否則數據就沒有價值,big也big不到哪裡去,是沒有價值的big.因此這種數據分析和挖掘工作具有巨大的價值,這個機會屬於小公司,小團體。
6)數據的使用和消費
在數據做到了很好的挖掘和分析後,需要把這些結果應用在一個具體的場合上,來獲得回報,做數據挖掘和分析的公司,必須得找到這些金主才行,而這些金主肯定也不是小公司。
大數據未來的形態,或者產業鏈結構一定是分層的,巨大的,價值的體現發生在各個層次,每個層次都是生態鏈的重要一環,都孕育著巨大的機遇和挑戰,我們能做的唯有努力,做適合自己的工作。