① 什麼是大數據以及大數據的特性有哪些

大數據技術是指從各種各樣海量類型的數據中,快速獲得有價值信息的能內力。適用於大數據容的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。

大數據具備以下4個特性:

一是數據量巨大。例如,人類生產的所有印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。

二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。

三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。

四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。

② 什麼是大數據它有哪四個基本特徵

簡言之,大數據源是指大數據集,這些數據集經過計算分析可以用於揭示某個方面相關的模式和趨勢。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。

大數據的特點:數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。

大數據的5V特性:

③ 大數據的基本特點有哪些

大數據的基本特點為:

1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):數據類型的多樣性。

3、速度(Velocity):指獲得數據的速度。

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。




(3)大數據的特徵包括什麼擴展閱讀:

大數據分析的六個基本方面:

1、Analytic Visualizations(可視化分析)

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

2、Data Mining Algorithms(數據挖掘演算法)

可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

4、Data Quality and Master Data Management(數據質量和數據管理)

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。

5、數據存儲,數據倉庫

數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的基礎,承擔對業務系統數據整合的任務,為商業智能系統提供數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和訪問,為聯機數據分析和數據挖掘提供數據平台。


參考資料來源:網路-大數據

④ 以下哪些是大數據的基本特徵

容量、種類、速度、可變性、真實性、復雜性、價值。

⑤ 大數據具有什麼特徵

第一、海量的數據規模。
大數據相較於傳統數據最大的區別就是海量的數據規模,這種規模大到「在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合」。就商業WiFi企業所擁有的數據而言,即便整合一個商場或者商業中心所採集到的數據也很難達到這種「超出范圍」的數據量,更不要說少有WiFi企業可以做到布點一整個商業中心,現在多數的商業WiFi企業還是處於小規模發展階段,所得到的數據多是某一個門店或者單獨營業個體的數據,並不能稱之為大數據。所以要想收集海量的數據,就目前的行業發展態勢而言,最佳的選擇是企業合作,通過合作,集合多家企業的數據,填補數據空白區域,增加數據量,真正意義上實現大數據到大數據的跨步。
第二、快速的數據流轉。
數據也是具有時效性的,採集到的大數據如果不經過流轉,最終只會過期報廢。尤其是對於商業WiFi企業來說,大多數商業WiFi企業採集到的數據都是在一些用戶的商業行為,這些行為往往具備時效性,例如,採集到某位用戶天在服裝商場的消費行為軌跡,如果不能做到這些數據的快速流轉、及時分析,那麼本次所採集到的數據可能便失去了價值,因為這位用戶不會每一天都在買衣服。快速流轉的數據就像是不斷流動的水,只有不斷流轉才能保證大數據的新鮮和價值。
第三、多樣的數據類型。
大數據的第三特徵就是數據類型的多樣性,首先用戶是一個復雜的個體,單一的行為數據是不足以描述用戶的。目前WiFi行業對大數據的使用多是通過分析用戶軌跡,了解用戶的行為習慣,由此進行用戶畫像,從而實現精確推送。但是單一的類型的數據並不足以實現用戶畫像,例如,筆者之前了解過一些企業可通過用戶某一段時間的在某一區域內的飲食數據,並由此在用戶進入這一區域的時候推送相關信息,但是這一信息只是單純的分析了用戶一段時間的飲食數據,並沒有考慮到用戶現階段的身體狀況、個人需求和經濟承受能力等等,所以這種推送的轉化率也就可想而知。
第四、價值密度低。
大數據本身擁有海量的信息,這種信息從採集到變現不要一個重要的過程——分析,只有通過分析才能實現大數據從數據到價值的轉變,但是眾所周知,大數據雖然擁有海量的信息,但是真正可用的數據可能只有很小一部分,從海量的數據中挑出一小部分數據本身就是各巨大的工作量,所以大數據的分析也常和雲計算聯繫到一起。只有集數十、數百或甚至數千的電腦分析能力於一身的雲計算才能完成對海量數據的分析,而很遺憾的是,目前WiFi行業中的絕大部分企業並不具備雲計算的能力

⑥ 大數據的特徵包括哪些

大數據的特徵包括你的購物習慣、經常去的地方、每天的出行路線、以及消費習慣等等全方位的資訊和給你的定製服務。

⑦ 大數據具有哪些特徵.答案

大數據的5V特點(IBM提出):Volume(大量)、(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(7)大數據的特徵包括什麼擴展閱讀:

一、具體特徵

容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

種類(Variety):數據類型的多樣性。

速度(Velocity):指獲得數據的速度。

可變性(Variability):妨礙了處理和有效地管理數據的過程。

真實性(Veracity):數據的質量。

復雜性(Complexity):數據量巨大,來源多渠道。

價值(value):合理運用大數據,以低成本創造高價值。

二、運用

洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

麻省理工學院利用手機定位數據和交通數據建立城市規劃。

梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

⑧ 大數據的特徵是什麼

1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;

2、種類(Variety):數據類型的多樣性;

3、速度(Velocity):指獲得數據的速度;

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。

(8)大數據的特徵包括什麼擴展閱讀:

大數據的精髓:

大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。

A、不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);

B、不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;

之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;

C、不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。

⑨ 大數據的特點主要有什麼

大數據的主要特點有:

准確(Veracity)

這是一個在討論大數據時時常被忽略的一個屬性,部分原因是這個屬性相對來說比較新,盡管它與其他的屬性同樣重要。這是一個與數據是否可靠相關的屬性,也就是那些在數據科學流程中會被用於決策的數據(而這不同於與傳統的數據分析流程),精確性與信噪比(signal-to-noise ratio)有關。

例如,在大數據中發現哪些數據對商業是真正有效的,這在信息理論中是個十分重要的概念。由於並不是所有的數據源都具有相等的可靠性,在這個過程中,大數據的精確性會趨於變化,如何增加可用數據的精確性是大數據的主要挑戰。

高速(Velocity)

大數據是在運動著的,通常處於很高的傳輸速度之下。它經常被認為是數據流,而數據流通常是很難被歸檔的(考慮到有限的網路存儲空間,單單是高速就已經是一個巨大的問題)。這就是為什麼只能收集到數據其中的某些部分。如果我們有能力收集數據的全部,長時間存儲大量數據也會顯得非常昂貴,所以周期性的收集數據遺棄一部分數據以節省空間,僅保留數據摘要(如平均值和方差)。 這個問題在未來會顯得更為嚴重,因為越來越多的數據正以越來越快的速度所產生。

體量(Volume)

大數據由大量數據組成,從幾個TB到幾個ZB。這些數據可能會分布在許多地方,通常是在一些連入網際網路的計算網路中。

一般來說,凡是滿足大數據的幾個V的條件的數據都會因為太大而無法被單獨的計算機處理。單單這一個問題就需要一種不同的數據處理思路,這也使得並行計算技術(例如MapRece)得以迅速崛起。

多樣(Variety)

在過去,數據或多或少是同構的,這種特點也使得它更易於管理。這種情況並不出現在大數據中,由於數據的來源各異,因此形式各異。這體現為各種不同的數據結構類型,半結構化以及完全非結構化的數據類型。