大數據可視化分析技術
⑴ 我們可以用哪些工具做大數據可視化分析
通過互聯網行技術的不斷突破,數據可視化分析不僅僅是通過編碼才能實現的簡單的靜態分析展現,而涌現了大批的數據可視化工具。
今天就來講講數據可視化吧,我來推薦一些實用的數據可視化工具,這些工具包含:
專業的大數據分析工具
各種Python數據可視化第三方庫
其它語言的數據可視化框架
一、專業的大數據分析工具
1、FineReport
FineReport是一款純Java編寫的、集數據展示(報表)和數據錄入(表單)功能於一身的企業級web報表工具,它「專業、簡捷、靈活」的特點和無碼理念,僅需簡單的拖拽操作便可以設計復雜的中國式報表,搭建數據決策分析系統。
來看看它做的dashboard吧:
⑵ 大數據的數據可視化是什麼樣的
DCV作為新一代數據中心可視化管理平台,讓管理人員可以清晰直觀地掌握IT運營中的有效信息,實現透明化與可視化管理,進而有效提升資產管理與監控管理的效率,實現立體式、可視化的新一代數據中心運行管理網頁鏈接
CampusBuilder (模模搭)提供了一個完整的、 網路化、 可視化的三維虛擬環境設計編輯平台,操作簡便,高效易用,用戶可使用滑鼠拖動的方式繪制各種結構及添加各種對象模型,即可立即創建數據中心機房的三維模型,還可以導入機房CAD圖紙輔助繪制,用戶可快速高效地設計數據中心機房,實現房間結構生成、裝飾調整、設備擺放和場景創建的工作,生成實際可用的數據中心三維虛擬模擬場景。
1、環境可視化
沙盤、展板、圖紙等傳統管理手段缺乏交互性,吸引力弱,信息傳遞效果不佳。Tarsier的環境可視化管理採用3D虛擬模擬技術,實現數據中心的園區、樓宇、機房等環境的可視化瀏覽,清晰完整地展現整個數據中心。同時配合監控可視化模塊,可以與安防、消防、樓宇自控等系統集成,為以上系統提供可視化管理手段,實現數據中心園區環境的跨系統集中管理,提高對數據中心園區的掌控能力和管理效率。
功能特性:
地理園區的虛擬模擬、建築外觀的虛擬模擬、建築內部結構的虛擬模擬。2、
管線可視化
通過傳統的平面圖紙和跳線表方式難以看清密集管線的信息。Tarsier的管線可視化管理以3D可視化手段梳理數據中心日益密集的電氣管道與網路線路,讓數據中心運維人員從平面圖紙及跳線表格中解脫出來,更加直觀地掌握數據中心的管線分布及走線情況,從而快速排查及修復管線類故障,提高管線管理水平和故障解決效率。
功能特性:
園區管網3D可視化、建築電氣管路3D可視化、建築空調管路3D可視化、機房設備布線3D可視化。3、資產可視化
數據中心內設備資產數量龐大,種類眾多,傳統的列表式管理方式效率低、實用性差。Tarsier的資產可視化管理模塊採用創新的三維互動技術實 現對數據中心資產配置信息的可視化管理,可與各類IT資產配置管理資料庫集成,也支持各種資產台賬表格直接導入,讓呆板的資產和配置數據變得鮮 活易用,大大提升了資產數據的實用性和易用性。
功能特性:
分級瀏覽可視化、設備上下架3D可視化、全設備虛擬模擬、快速模糊查詢、強大模型庫支持。4、容量可視化
傳統管理軟體對機房容量情況缺乏有效的信息檢索手段,查詢困難。Tarsier的容量可視化管理模塊提供以機櫃為單位的數據中心容量管理,以樹形結構和3D可視化展現兩種方式全面表現機房和機櫃整體使用情況,對於空間容量、電力容量、承重容量等進行精確統計和展現,幫助運維人員高效的管理機房的容量資源,讓機房各類資源的負荷更加均衡,提升數據中心資源使用效率。
功能特性:
地理園區的虛擬模擬、建築外觀的虛擬模擬、建築內部結構的虛擬模擬。5、監控可視化
監控可視化管理整合數據中心內各種專業監控工具(如動環監控、安防監控、網路監控、主機監控、應用監控等),把多種監控數據融為一體,建立統一監控窗口,解決監控數據孤島問題,實現監控工具、監控數據的價值最大化。同時,基於T3D圖形引擎強大的可視化能力,提供豐富的可視化手段,扭轉由於二維信息維度不足而導致的數據與報表泛濫狀況,切實提升監控管理水平。
功能特性:
門禁監控集成、視頻監控集成、消防監控集成、環境監控集成、配電監控集成、製冷監控集成、設備統一告警展示。6、演示可視化
PPT介紹、動畫錄像等傳統匯報方式枯燥單調、真實感不強。Tarsier的演示可視化管理藉助T3D圖形引擎提供的虛擬線路和可視化展示等強大功能,滿足數據中心基礎設施多樣化的展示需求,如邏輯關系表達、模擬氣流、PPT整合、自動巡檢及演示路線定製等,用戶可以在平台中製作內容豐富、生動多彩、圖文並茂的數據中心介紹和演示內容,以耳目一新的形式展現數據中心的方方面面,有力提升數據中心整體形象,充分體現數據中心管理水平。
功能特性:
PPT演示匯報管理、日常工作視角管理、動畫線路管理。⑶ 大數據的時代 什麼叫數據可視化
基於數據的可視化形式有:視覺暗示、坐標系、標尺、背景信息以及前面四種形式的任意組合。
(1)視覺暗示:
是指通過查看圖表就可以與潛意識中的意識進行聯系從而得出圖表表達的意識。常用的視覺暗示主要有:位置(位置高低)、長度(長短)、角度(大小)、方向(方向上升還是下降)、形狀(不同形狀代表不同分類)、面積(面積大小)、體積(體積大小)、飽和度(色調的強度,就是顏色的深淺)、色調(不同顏色)。
(2)坐標系:
這里的坐標系和我們之前數學中學到的坐標系是相同的,只不過坐標軸的意義可能稍有不同。常見的坐標系種類有:直角坐標系、極坐標系和地理坐標系。
大家對直角坐標系、極坐標系比較熟悉,這里說一下地理坐標系。
地理坐標系是使用三維球面來定義地球表面位置,以實現通過經緯度對地球表面點位引用的坐標系。但是我們在進行數據可視化的時候一般用投影的方法把其從三維數據轉化成二維的平面圖形。
(3)標尺:
前面說到的三種坐標系只是定義了展示數據的維度和方向,而標尺的作用是用來衡量不同方向和維度上的大小,其實和我們熟悉的刻度挺像。
(4)背景信息:
此處的背景和我們在語文中學習到的背景是一個概念,是為了說明數據的相關信息(who、what、when、where、why),使數據更加清晰,便於讀者更好的理解。
(5)組合組件:
組合組件就是根據目標用途將上面四種信息進行組合。⑷ 大數據開發和大數據可視化哪個好
大數據開發的學習內容中包含可視化,掌握了大數據的開發技術,也可以從事可視化的相關工作。
基礎階段:Linux、Docker、KVM、MySQL基礎、Oracle基礎、MongoDB、redis。hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、歷史,HDFS工作原理,YARN介紹及組件介紹。大數據存儲階段:hbase、hive、sqoop。大數據架構設計階段:Flume分布式、Zookeeper、Kafka。大數據實時計算階段:Mahout、Spark、storm。大數據數據採集階段:Python、Scala。大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。
大數據技術人員的就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
工作崗位:ETL研發、Hadoop開發、可視化(前端展現)工具開發、信息架構開發、數據倉庫研究、OLAP開發、數據預測(數據挖掘)分析、企業數據管理、數據安全研究、數據科學研究等。⑸ 什麼是大數據可視化
基本概念:
1.數據空間
數據空間是由n維屬性和m個元素組成的數據集所構成的多維信息空間。
2.數據開發
數據開發是指利用一定的演算法和工具對數據進行定量的推演和計算。
3.數據分析
數據分析指對多維數據進行切片、塊、旋轉等動作剖析數據,從而能多角度多側面觀察數據。
4.數據可視化
數據可視化是指將大型數據集中的數據以圖形圖像形式表示,並利用數據分析和開發工具發現其中未知信息的處理過程。
數據可視化優點:
1.接受更快
人腦對視覺信息的處理要比書面信息容易得多。使用圖表來總結復雜的數據,可以確保對關系的理解要比那些混亂的報告或電子表格更快。節省接受時間。
2.增強互動
數據可視化的主要好處是它及時帶來了風險變化。與靜態圖表不同,可視化的應用可以是流動性的操作,更有力的了解數據信息。
3.強化關聯
數據可視化的應用可以使數據之間的各種聯系方式緊密關聯。以數據圖表的形式描繪各組數據之間的聯系。
4.美化數據
可視化從視覺的角度來描繪數據,可根據技術工具對數據的表現形式進行美化,以達到觀看數據的同時對於視覺也是一種享受的效果。
關於什麼是大數據可視化,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑹ 大數據可視化分析工具有哪些
國內大數據魔鏡和永洪。永洪頁面和圖表不太好看,大數據魔鏡還不錯,可視化效果很好,頁面也很整潔。我現在用的是魔鏡付費的版本,功能比免費的雲平台版本還要強大。
⑺ 一般用哪些工具做大數據可視化分析
酷屏是億信華辰的數據可視化產品,內置上百種可視化元素和六十餘種風格各異的表格、導航、統計圖等組件及SVG特效可供用戶選擇,通過設計與搭配,可衍生出成千上萬種可視化效果。在提供傳統的柱狀圖、餅圖、儀表盤等基礎圖表組件的基礎上,還提供了光暈圖、泡泡圖、流向地圖等十餘種新穎奪目的個性化圖表,更有獨特的3D全景視角,自由快捷製作各類互動式常規屏和大屏報表。
⑻ 5個常用的大數據可視化分析工具
1.Tableau
Tableau 幫助人們快速分析、可視化並分享信息。它的程序很容易上手,各公司可以用它將大量數據拖放到數字“畫布”上,轉眼間就能創建好各種圖表。數以萬計的用戶使用 Tableau Public 在博客與網站中分享數據。
2.ECharts
Echarts可以運用於散點圖、折線圖、柱狀圖等這些常用的圖表的製作。Echarts的優點在於,文件體積比較小,打包的方式靈活,可以自由選擇你需要的圖表和組件。而且圖表在移動端有良好的自適應效果,還有專為移動端打造的交互體驗。
3.Highcharts
Highcharts的圖表類型是很豐富的,線圖、柱形圖、餅圖、散點圖、儀表圖、雷達圖、熱力圖、混合圖等類型的圖表都可以製作,也可以製作實時更新的曲線圖。
另外,Highcharts是對非商用免費的,對於個人網站,學校網站和非盈利機構,可以不經過授權直接使用 Highcharts 系列軟體。Highcharts還有一個好處在於,它完全基於 HTML5 技術,不需要安裝任何插件,也不需要配置 PHP、Java 等運行環境,只需要兩個 JS 文件即可使用。
4.魔鏡
魔鏡是中國最流行的大數據可視化分析挖掘平台,幫助企業處理海量數據價值,讓人人都能做數據分析。
魔鏡基礎企業版適用於中小企業內部使用,基礎功能免費,可代替報表工具和傳統BI,使用更簡單化,可視化效果更絢麗易讀。
5.圖表秀
圖表秀的操作簡單易懂, 而且站內包含多種圖表,涉及各行各業的報表數據都可以用圖表秀實現, 支持自由編輯和Excel、csv等表格一鍵導入,同時可以實現多個圖表之間聯動, 使數據在我們的軟體輔助下變的更加生動直觀,是目前國內先進的圖表製作工具。
關於5個常用的大數據可視化分析工具,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑼ 大數據可視化技術是什麼做大數據開發要會嗎
可視化技術是利用計算機圖形學及圖像處理技術,將數據轉換為圖形或圖像形式顯示到屏幕上,並進行交互處理的理論、方法和技術。 做大數據開發不需要會這個,需要會的是Hadoop生態系統內的組件的開發技術,像spatk、hbase等,你可以參照八斗學院的大綱來學習
⑽ 如何實現大數據可視化
1.考慮用戶
管理咨詢公司Aspirent視覺分析實踐主管Dan Gastineau表示,企業應使用顏色、形狀、大小和布局來顯示可視化的設計和使用。
Aspirent使用顏色來突出希望用戶關注的分析方面。而大小可有效說明數量,但過多使用不同大小來傳遞信息可能會導致混亂。這里應該有選擇地使用大小,即在咨詢團隊成員想要強調的地方。
2.講述連貫的故事
與你的受眾溝通,保持設計的簡單和專注性。顏色到圖表數量等細節可幫助確保儀錶板講述連貫的故事。MicroStrategy產品管理高級副總裁Saurabh Abhyankar說:“儀錶板就像一本書,它需要考慮讀者的設計元素,而不僅僅是強制列出所有可訪問的數據。”儀錶板的設計將成為推動部署的因素。
3.迭代設計
應不斷從視覺分析用戶獲得反饋意見。隨著時間的推移,數據探索會引發新的想法和問題,而隨時間和部署推移提高數據相關性會使用戶更智能。
從你的受眾徵求並獲取反饋意見可改善體驗。谷歌雲端數據工作室首席產品經理Nick Mihailovski表示,快速構建概念、快速獲取反饋意見並進行迭代可更快獲得更好的結果。另外,還可將調查和表格整合到精美的報告中,也可以幫助確保大數據的可視化結果確實有助於目標受眾。
4.個性化一切
應確保儀錶板向最終用戶顯示個性化信息,並確保其相關性。並且,還應確保可視化在設計上反映其所在的設備,並為最終用戶提供離線訪問,這將讓可視化走得更長遠。Mihailovski說,通過精心設計的互動式可視化來吸引觀眾以及傳播數據文化,這會使分析具有吸引力和富有樂趣。
5.從分析目標開始
應確保數據類型和分析目標可反映所選的可視化類型。Mihailovski稱:“人們通常會採用相反的方法,他們先看到整潔或模糊的可視化類型,然後試圖使其數據相匹配。”對於大數據項目的可視化,簡單的表格或條形圖有時可能是最有效的。
關於如何實現大數據可視化,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。