大數據建模平台
㈠ 大數據分析平台有做的特別好的嗎
由於大數抄據產業的興盛,國內知名的大數據分析平台也如雨後春筍層出不窮,其中做的不錯的億信華辰的一站式數據分析平台ABI,融合了數據源適配、ETL數據處理、數據建模、數據分析、數據填報、工作流、門戶、移動應用等核心功能。採用輕量級SOA架構設計、B/S模式,各模塊間無縫集成。使用了新一代的3D引擎技術,大屏展示炫酷。
支持廣泛的數據源接入,同時支持基於Hadoop框架的PetaBase分布式資料庫,TB級別數據實時分析,秒級響應,輕松完成大數據分析與展示。數據整合模塊支持可視化的定義ETL過程,完成對數據的清洗、裝換、處理,輕松完成大數據的加工處理。數據集模塊支持資料庫、文件、介面等多方式的數據建模。數據分析模塊支持報表分析、敏捷看板、即席報告、幻燈片、酷屏、數據填報、數據挖掘等多種分析手段對數據進行分析、展現、應用。強大的應用發布模塊輕松打造個性化門戶。
㈡ 大數據服務平台是什麼有什麼用
現今社會每時每刻都在產生數據,企業內部的經營交易信息、物聯網世界中的商內品物流信息,互容聯網世界中的人與人交互信息、位置信息等,我們身邊處處都有大數據。而大數據服務平台則是一個集數據接入、數據處理、數據存儲、查詢檢索、分析挖掘等、應用介面等為一體的平台,然後通過在線的方式來提供數據資源、數據能力等來驅動業務發展的服務,國外如Amazon ,Oracle,IBM,Microsoft...國內如華為,商理事等公司都是該服務的踐行者。
㈢ 什麼是大數據平台
我們在搜索引擎中每一次搜索的記錄、在電子商城中每一次的商品瀏覽和購買記錄、每一次電子支付的數據...這些看似不相乾的龐雜數據,匯總在一起,經過分析提煉,即可描繪出你這個人的行為習慣概況,對你未來可能採取的行為做出概率相當高的預測,這些數據我們可以把它統稱為顧客大數據。
移動互聯網興起之時,大家都在搶占線上流量、線上數據,但中國互聯網,你懂的,基本上龐大的消費顧客大數據都是掌握在BAT手上的,小互聯網公司很難獲取核心數據。但是隨著線下消費升級的發展,越來越多的人開始看到線下顧客大數據的重要性了,畢竟,線下店鋪才是顧客消費的主戰場,而且流量也未被BAT這樣的巨頭企業瓜分完,可以算是充滿商機的藍海了。
藍海歸藍海,但也存在一個問題,就是線下顧客大數據太龐大,太分散,除了星巴克麥當勞這種大企業有能力收集之外,一般店鋪難以建立自己的大數據平台,更不用談大數據的智能化處理了。
在這方面,目前就我所知,有家專門服務線下店鋪市場的智慧店鋪企業,名叫掌貝。這是家店鋪Marketing Tech智能營銷公司,它依託融合業務入口所沉澱的店鋪大數據,幫助商戶搭建自己的顧客大數據平台,實現自動化的精準營銷,從而帶動老客迴流、新客引流。可謂是正好切中線下顧客大數據市場的要害啦,有興趣的人可以去了解下。
㈣ 大數據分析系統平台方案有哪些
目前常用的大數據解決方案包括以下幾類
一、Hadoop。Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來
四、Apache Drill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。
㈤ 如何創建一個大數據平台
所謂的大數據平台不是獨立存在的,比如百度是依賴搜索引擎獲得大數據並開展業務的,阿里是通過電子商務交易獲得大數據並開展業務的,騰訊是通過社交獲得大數據並開始業務的,所以說大數據平台不是獨立存在的,重點是如何搜集和沉澱數據,如何分析數據並挖掘數據的價值。
我可能還不夠資格回答這個問題,沒有經歷過一個公司大數據平台從無到有到復雜的過程。不過說說看法吧,也算是梳理一下想法找找噴。
這是個需求驅動的過程。
曾經聽過spotify的分享,印象很深的是,他們分享說,他們的hadoop集群第一次故障是因為,機器放在靠窗的地方,太陽曬了當機了(笑)。從簡單的沒有機房放在自家窗前的集群到一直到現在復雜的數據平台,這是一個不斷演進的過程。
對小公司來說,大概自己找一兩台機器架個集群算算,也算是大數據平台了。在初創階段,數據量會很小,不需要多大的規模。這時候組件選擇也很隨意,Hadoop一套,任務調度用腳本或者輕量的框架比如luigi之類的,數據分析可能hive還不如導入RMDB快。監控和部署也許都沒時間整理,用腳本或者輕量的監控,大約是沒有ganglia、nagios,puppet什麼的。這個階段也許算是技術積累,用傳統手段還是真大數據平台都是兩可的事情,但是為了今後的擴展性,這時候上Hadoop也許是不錯的選擇。
當進入高速發展期,也許擴容會跟不上計劃,不少公司可能會遷移平台到雲上,比如AWS阿里雲什麼的。小規模高速發展的平台,這種方式應該是經濟實惠的,省了運維和管理的成本,擴容比較省心。要解決的是選擇平台本身提供的服務,計算成本,打通數據出入的通道。整個數據平台本身如果走這條路,可能就已經基本成型了。走這條路的比較有名的應該是netflix。
也有一個階段,你發現雲服務的費用太高,雖然省了你很多事,但是花錢嗖嗖的。幾個老闆一合計,再玩下去下個月工資發布出來了。然後無奈之下公司開始往私有集群遷移。這時候你大概需要一群靠譜的運維,幫你監管機器,之前兩三台機器登錄上去看看狀態換個磁碟什麼的也許就不可能了,你面對的是成百上千台主機,有些關鍵服務必須保證穩定,有些是數據節點,磁碟三天兩頭損耗,網路可能被壓得不堪重負。你需要一個靠譜的人設計網路布局,設計運維規范,架設監控,值班團隊走起7*24小時隨時准備出台。然後上面再有平台組真的大數據平台走起。
然後是選型,如果有技術實力,可以直接用社區的一整套,自己管起來,監控部署什麼的自己走起。這個階段部署監控和用戶管理什麼的都不可能像兩三個節點那樣人肉搞了,配置管理,部署管理都需要專門的平台和組件;定期Review用戶的作業和使用情況,決定是否擴容,清理數據等等。否則等機器和業務進一步增加,團隊可能會死的很慘,疲於奔命,每天事故不斷,進入惡性循環。
當然有金錢實力的大戶可以找Cloudera,Hortonworks,國內可以找華為星環,會省不少事,適合非互聯網土豪。當然互聯網公司也有用這些東西的,比如Ebay。
接下去你可能需要一些重量的組件幫你做一些事情。
比如你的數據接入,之前可能找個定時腳本或者爬log發包找個伺服器接收寫入HDFS,現在可能不行了,這些大概沒有高性能,沒有異常保障,你需要更強壯的解決方案,比如Flume之類的。
你的業務不斷壯大,老闆需要看的報表越來越多,需要訓練的數據也需要清洗,你就需要任務調度,比如oozie或者azkaban之類的,這些系統幫你管理關鍵任務的調度和監控。
數據分析人員的數據大概可能漸漸從RDBMS搬遷到集群了,因為傳統資料庫已經完全hold不住了,但他們不會寫代碼,所以你上馬了Hive。然後很多用戶用了Hive覺得太慢,你就又上馬交互分析系統,比如Presto,Impala或者SparkSQL。
你的數據科學家需要寫ML代碼,他們跟你說你需要Mahout或者Spark MLLib,於是你也部署了這些。
至此可能數據平台已經是工程師的日常工作場所了,大多數業務都會遷移過來。這時候你可能面臨很多不同的問題。
比如各個業務線數據各種數據表多的一塌糊塗,不管是你還是寫數據的人大概都不知道數據從哪兒來,接下去到哪兒去。你就自己搞了一套元數據管理的系統。
你分析性能,發現你們的數據都是上百Column,各種復雜的Query,裸存的Text格式即便壓縮了也還是慢的要死,於是你主推用戶都使用列存,Parquet,ORC之類的。
又或者你發現你們的ETL很長,中間生成好多臨時數據,於是你下狠心把pipeline改寫成Spark了。
再接下來也許你會想到花時間去維護一個門戶,把這些零散的組件都整合到一起,提供統一的用戶體驗,比如一鍵就能把數據從資料庫chua一下拉到HDFS導入Hive,也能一鍵就chua一下再搞回去;點幾下就能設定一個定時任務,每天跑了給老闆自動推送報表;或者點一下就能起一個Storm的topology;或者界面上寫幾個Query就能查詢Hbase的數據。這時候你的數據平台算是成型了。
當然,磕磕碰碰免不了。每天你都有新的問題和挑戰,否則你就要失業了不是?
你發現社區不斷在解決你遇到過的問題,於是你們架構師每天分出很多時間去看社區的進展,有了什麼新工具,有什麼公司發布了什麼項目解決了什麼問題,興許你就能用上。
上了這些亂七八糟的東西,你以為就安生了?Hadoop平台的一個大特點就是坑多。尤其是新做的功能新起的項目。對於平台組的人,老闆如果知道這是天然坑多的平台,那他也許會很高興,因為跟進社區,幫忙修bug,一起互動其實是很提升公司影響力的實情。當然如果老闆不理解,你就自求多福吧,招幾個老司機,出了問題能馬上帶路才是正道。當然團隊的技術積累不能不跟上,因為數據平台還是亂世,三天不跟進你就不知道世界是什麼樣了。任何一個新技術,都是坑啊坑啊修啊修啊才完善的。如果是關鍵業務換技術,那需要小心再小心,技術主管也要有足夠的積累,能夠駕馭,知道收益和風險。
㈥ 大數據平台可視化建模工具推薦
Smartbi數據挖掘平台(Smartbi Mining)是用於預測性分析的獨立產品,旨在為企業所做的決策提供預測性智能。回該平台答不僅可為用戶提供直觀的流式建模、拖拽式操作和流程化、可視化的建模界面,還提供了大量的數據預處理操作。此外,它內置了多種實用的、經典的機器學習演算法,這些演算法配置簡單降低了機器學習的使用門檻,大大節省了企業成本,並支持標準的PMML模型輸出,可以將模型發送到Smartbi統一平台,與商業智能平台實現了完美整合。使用對象包括數據科學家、業務分析師、行業咨詢師、實施顧問等。
㈦ 有靠譜的大數據分析平台推薦嗎
由於大數據產業的興抄盛,國內知名的大數據分析平台也如雨後春筍層出不窮,其中做的不錯的億信華辰的一站式數據分析平台ABI,融合了數據源適配、ETL數據處理、數據建模、數據分析、數據填報、工作流、門戶、移動應用等核心功能。採用輕量級SOA架構設計、B/S模式,各模塊間無縫集成。使用了新一代的3D引擎技術,大屏展示炫酷。
支持廣泛的數據源接入,同時支持基於Hadoop框架的PetaBase分布式資料庫,TB級別數據實時分析,秒級響應,輕松完成大數據分析與展示。數據整合模塊支持可視化的定義ETL過程,完成對數據的清洗、裝換、處理,輕松完成大數據的加工處理。數據集模塊支持資料庫、文件、介面等多方式的數據建模。數據分析模塊支持報表分析、敏捷看板、即席報告、幻燈片、酷屏、數據填報、數據挖掘等多種分析手段對數據進行分析、展現、應用。強大的應用發布模塊輕松打造個性化門戶。
㈧ 大數據平台是什麼什麼時候需要大數據平台如何建立大數據平台
首先我們要了解java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
㈨ 大數據平台建設有哪些步驟以及需要注意的問題
大數據平台的搭建步驟:
1、linux系統安裝
一般使用開源版的Redhat系統--CentOS作為底層平台。為了提供穩定的硬體基礎,在給硬碟做RAID和掛載數據存儲節點的時,需要按情況配置。
2、分布式計算平台/組件安裝
國內外的分布式系統的大多使用的是Hadoop系列開源系統。Hadoop的核心是HDFS,一個分布式的文件系統。在其基礎上常用的組件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等
使用開源組件的優點:1)使用者眾多,很多bug可以在網上找的答案(這往往是開發中最耗時的地方)。2)開源組件一般免費,學習和維護相對方便。3)開源組件一般會持續更新,提供必要的更新服務『當然還需要手動做更新操作』。4)因為代碼開源,若出bug可自由對源碼作修改維護。
3、數據導入
數據導入的工具是Sqoop。用它可以將數據從文件或者傳統資料庫導入到分布式平台『一般主要導入到Hive,也可將數據導入到Hbase』。
4、數據分析
數據分析一般包括兩個階段:數據預處理和數據建模分析。
數據預處理是為後面的建模分析做准備,主要工作時從海量數據中提取可用特徵,建立大寬表。這個過程可能會用到Hive SQL,Spark QL和Impala。
數據建模分析是針對預處理提取的特徵/數據建模,得到想要的結果。這一塊最好用的是Spark。常用的機器學習演算法,如樸素貝葉斯、邏輯回歸、決策樹、神經網路、TFIDF、協同過濾等,都已經在ML lib裡面,調用比較方便。
5、結果可視化及輸出API
可視化一般式對結果或部分原始數據做展示。一般有兩種情況,行數據展示,和列查找展示。要基於大數據平台做展示,會需要用到ElasticSearch和Hbase。Hbase提供快速『ms級別』的行查找。 ElasticSearch可以實現列索引,提供快速列查找。
大數據平台搭建中的主要問題
1、穩定性 Stability
理論上來說,穩定性是分布式系統最大的優勢,因為它可以通過多台機器做數據及程序運行備份以確保系統穩定。但也由於大數據平台部署於多台機器上,配置不合適,也可能成為最大的問題。
2、可擴展性 Scalability
如何快速擴展已有大數據平台,在其基礎上擴充新的機器是雲計算等領域應用的關鍵問題。在實際2B的應用中,有時需要增減機器來滿足新的需求。如何在保留原有功能的情況下,快速擴充平台是實際應用中的常見問題。
㈩ 如何打造高性能大數據分析平台
大數據分析系統作為一個關鍵性的系統在各個公司迅速崛起。但是這種海量規模的數據帶來了前所未有的性能挑戰。同時,如果大數據分析系統無法在第一時間為運營決策提供關鍵數據,那麼這樣的大數據分析系統一文不值。本文將從技術無關的角度討論一些提高性能的方法。下面我們將討論一些能夠應用在大數據分析系統不同階段的技巧和准則(例如數據提取,數據清洗,處理,存儲,以及介紹)。本文應作為一個通用准則,以確保最終的大數據分析平台能滿足性能要求。
1. 大數據是什麼?
大數據是最近IT界最常用的術語之一。然而對大數據的定義也不盡相同,所有已知的論點例如結構化的和非結構化、大規模的數據等等都不夠完整。大數據系統通常被認為具有數據的五個主要特徵,通常稱為數據的5 Vs。分別是大規模,多樣性,高效性、准確性和價值性。
互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果真的想做,可以來這里,這個手技的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,想說的是,除非想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
據Gartner稱,大規模可以被定義為「在本(地)機數據採集和處理技術能力不足以為用戶帶來商業價值。當現有的技術能夠針對性的進行改造後來處理這種規模的數據就可以說是一個成功的大數據解決方案。
這種大規模的數據沒將不僅僅是來自於現有的數據源,同時也會來自於一些新興的數據源,例如常規(手持、工業)設備,日誌,汽車等,當然包括結構化的和非結構化的數據。
據Gartner稱,多樣性可以定義如下:「高度變異的信息資產,在生產和消費時不進行嚴格定義的包括多種形式、類型和結構的組合。同時還包括以前的歷史數據,由於技術的變革歷史數據同樣也成為多樣性數據之一 「。
高效性可以被定義為來自不同源的數據到達的速度。從各種設備,感測器和其他有組織和無組織的數據流都在不斷進入IT系統。由此,實時分析和對於該數據的解釋(展示)的能力也應該隨之增加。
根據Gartner,高效性可以被定義如下:「高速的數據流I/O(生產和消費),但主要聚焦在一個數據集內或多個數據集之間的數據生產的速率可變上」。
准確性,或真實性或叫做精度是數據的另一個重要組成方面。要做出正確的商業決策,當務之急是在數據上進行的所有分析必須是正確和准確(精確)的。
大數據系統可以提供巨大的商業價值。像電信,金融,電子商務,社交媒體等,已經認識到他們的數據是一個潛在的巨大的商機。他們可以預測用戶行為,並推薦相關產品,提供危險交易預警服務,等等。
與其他IT系統一樣,性能是大數據系統獲得成功的關鍵。本文的中心主旨是要說明如何讓大數據系統保證其性能。
2. 大數據系統應包含的功能模塊
大數據系統應該包含的功能模塊,首先是能夠從多種數據源獲取數據的功能,數據的預處理(例如,清洗,驗證等),存儲數據,數據處理、數據分析等(例如做預測分析??,生成在線使用建議等等),最後呈現和可視化的總結、匯總結果。
下圖描述了大數據系統的這些高層次的組件
描述本節的其餘部分簡要說明了每個組分,如圖1。
2.1 各種各樣的數據源當今的IT生態系統,需要對各種不同種類來源的數據進行分析。這些來源可能是從在線Web應用程序,批量上傳或feed,流媒體直播數據,來自工業、手持、家居感測的任何東西等等。
顯然從不同數據源獲取的數據具有不同的格式、使用不同的協議。例如,在線的Web應用程序可能會使用SOAP / XML格式通過HTTP發送數據,feed可能會來自於CSV文件,其他設備則可能使用MQTT通信協議。
由於這些單獨的系統的性能是不在大數據系統的控制范圍之內,並且通常這些系統都是外部應用程序,由第三方供應商或團隊提供並維護,所以本文將不會在深入到這些系統的性能分析中去。
2.2 數據採集第一步,獲取數據。這個過程包括分析,驗證,清洗,轉換,去重,然後存到適合你們公司的一個持久化設備中(硬碟、存儲、雲等)。
在下面的章節中,本文將重點介紹一些關於如何獲取數據方面的非常重要的技巧。請注意,本文將不討論各種數據採集技術的優缺點。
2.3 存儲數據第二步,一旦數據進入大數據系統,清洗,並轉化為所需格式時,這些過程都將在數據存儲到一個合適的持久化層中進行。
在下面的章節中,本文將介紹一些存儲方面的最佳實踐(包括邏輯上和物理上)。在本文結尾也會討論一部分涉及數據安全方面的問題。
2.4 數據處理和分析第三步,在這一階段中的一部分干凈數據是去規范化的,包括對一些相關的數據集的數據進行一些排序,在規定的時間間隔內進行數據結果歸集,執行機器學習演算法,預測分析等。
在下面的章節中,本文將針對大數據系統性能優化介紹一些進行數據處理和分析的最佳實踐。
2.5 數據的可視化和數據展示最後一個步驟,展示經過各個不同分析演算法處理過的數據結果。該步驟包括從預先計算匯總的結果(或其他類似數據集)中的讀取和用一種友好界面或者表格(圖表等等)的形式展示出來。這樣便於對於數據分析結果的理解。
3. 數據採集中的性能技巧
數據採集是各種來自不同數據源的數據進入大數據系統的第一步。這個步驟的性能將會直接決定在一個給定的時間段內大數據系統能夠處理的數據量的能力。
數據採集??過程基於對該系統的個性化需求,但一些常用執行的步驟是 - 解析傳入數據,做必要的驗證,數據清晰,例如數據去重,轉換格式,並將其存儲到某種持久層。
涉及數據採集過程的邏輯步驟示如下圖所示:
下面是一些性能方面的技巧:
來自不同數據源的傳輸應該是非同步的。可以使用文件來傳輸、或者使用面向消息的(MoM)中間件來實現。由於數據非同步傳輸,所以數據採集過程的吞吐量可以大大高於大數據系統的處理能力。 非同步數據傳輸同樣可以在大數據系統和不同的數據源之間進行解耦。大數據基礎架構設計使得其很容易進行動態伸縮,數據採集的峰值流量對於大數據系統來說算是安全的。
如果數據是直接從一些外部資料庫中抽取的,確保拉取數據是使用批量的方式。
如果數據是從feed file解析,請務必使用合適的解析器。例如,如果從一個XML文件中讀取也有不同的解析器像JDOM,SAX,DOM等。類似地,對於CSV,JSON和其它這樣的格式,多個解析器和API是可供選擇。選擇能夠符合需求的性能最好的。
優先使用內置的驗證解決方案。大多數解析/驗證工作流程的通常運行在伺服器環境(ESB /應用伺服器)中。大部分的場景基本上都有現成的標准校驗工具。在大多數的情況下,這些標準的現成的工具一般來說要比你自己開發的工具性能要好很多。
類似地,如果數據XML格式的,優先使用XML(XSD)用於驗證。
即使解析器或者校等流程使用自定義的腳本來完成,例如使用java優先還是應該使用內置的函數庫或者開發框架。在大多數的情況下通常會比你開發任何自定義代碼快得多。
盡量提前濾掉無效數據,以便後續的處理流程都不用在無效數據上浪費過多的計算能力。
大多數系統處理無效數據的做法通常是存放在一個專門的表中,請在系統建設之初考慮這部分的資料庫存儲和其他額外的存儲開銷。
如果來自數據源的數據需要清洗,例如去掉一些不需要的信息,盡量保持所有數據源的抽取程序版本一致,確保一次處理的是一個大批量的數據,而不是一條記錄一條記錄的來處理。一般來說數據清洗需要進行表關聯。數據清洗中需要用到的靜態數據關聯一次,並且一次處理一個很大的批量就能夠大幅提高數據處理效率。
數據去重非常重要這個過程決定了主鍵的是由哪些欄位構成。通常主鍵都是時間戳或者id等可以追加的類型。一般情況下,每條記錄都可能根據主鍵進行索引來更新,所以最好能夠讓主鍵簡單一些,以保證在更新的時候檢索的性能。
來自多個源接收的數據可以是不同的格式。有時,需要進行數據移植,使接收到的數據從多種格式轉化成一種或一組標准格式。
和解析過程一樣,我們建議使用內置的工具,相比於你自己從零開發的工具性能會提高很多。
數據移植的過程一般是數據處理過程中最復雜、最緊急、消耗資源最多的一步。因此,確保在這一過程中盡可能多的使用並行計算。
一旦所有的數據採集的上述活動完成後,轉換後的數據通常存儲在某些持久層,以便以後分析處理,綜述,聚合等使用。
多種技術解決方案的存在是為了處理這種持久(RDBMS,NoSQL的分布式文件系統,如Hadoop和等)。
謹慎選擇一個能夠最大限度的滿足需求的解決方案。
4. 數據存儲中的性能技巧
一旦所有的數據採集步驟完成後,數據將進入持久層。
在本節中將討論一些與數據數據存儲性能相關的技巧包括物理存儲優化和邏輯存儲結構(數據模型)。這些技巧適用於所有的數據處理過程,無論是一些解析函數生的或最終輸出的數據還是預計算的匯總數據等。
首先選擇數據範式。您對數據的建模方式對性能有直接的影響,例如像數據冗餘,磁碟存儲容量等方面。對於一些簡單的文件導入資料庫中的場景,你也許需要保持數據原始的格式,對於另外一些場景,如執行一些分析計算聚集等,你可能不需要將數據範式化。
大多數的大數據系統使用NoSQL資料庫替代RDBMS處理數據。
不同的NoSQL資料庫適用不同的場景,一部分在select時性能更好,有些是在插入或者更新性能更好。
資料庫分為行存儲和列存儲。
具體的資料庫選型依賴於你的具體需求(例如,你的應用程序的資料庫讀寫比)。
同樣每個資料庫都會根據不同的配置從而控制這些資料庫用於資料庫復制備份或者嚴格保持數據一致性?這些設置會直接影響資料庫性能。在資料庫技術選型前一定要注意。
壓縮率、緩沖池、超時的大小,和緩存的對於不同的NoSQL資料庫來說配置都是不同的,同時對資料庫性能的影響也是不一樣的。
數據Sharding和分區是這些資料庫的另一個非常重要的功能。數據Sharding的方式能夠對系統的性能產生巨大的影響,所以在數據Sharding和分區時請謹慎選擇。
並非所有的NoSQL資料庫都內置了支持連接,排序,匯總,過濾器,索引等。
如果有需要還是建議使用內置的類似功能,因為自己開發的還是不靈。
NoSQLs內置了壓縮、編解碼器和數據移植工具。如果這些可以滿足您的部分需求,那麼優先選擇使用這些內置的功能。這些工具可以執行各種各樣的任務,如格式轉換、壓縮數據等,使用內置的工具不僅能夠帶來更好的性能還可以降低網路的使用率。
許多NoSQL資料庫支持多種類型的文件系統。其中包括本地文件系統,分布式文件系統,甚至基於雲的存儲解決方案。
如果在互動式需求上有嚴格的要求,否則還是盡量嘗試使用NoSQL本地(內置)文件系統(例如HBase 使用HDFS)。
這是因為,如果使用一些外部文件系統/格式,則需要對數據進行相應的編解碼/數據移植。它將在整個讀/寫過程中增加原本不必要的冗餘處理。
大數據系統的數據模型一般來說需要根據需求用例來綜合設計。與此形成鮮明對比的是RDMBS數據建模技術基本都是設計成為一個通用的模型,用外鍵和表之間的關系用來描述數據實體與現實世界之間的交互。
在硬體一級,本地RAID模式也許不太適用。請考慮使用SAN存儲。
5. 數據處理分析中的性能技巧
數據處理和分析是一個大數據系統的核心。像聚合,預測,聚集,和其它這樣的邏輯操作都需要在這一步完成。
本節討論一些數據處理性能方面的技巧。需要注意的是大數據系統架構有兩個組成部分,實時數據流處理和批量數據處理。本節涵蓋數據處理的各個方面。
在細節評估和數據格式和模型後選擇適當的數據處理框架。
其中一些框架適用於批量數據處理,而另外一些適用於實時數據處理。
同樣一些框架使用內存模式,另外一些是基於磁碟io處理模式。
有些框架擅長高度並行計算,這樣能夠大大提高數據效率。
基於內存的框架性能明顯優於基於磁碟io的框架,但是同時成本也可想而知。
概括地說,當務之急是選擇一個能夠滿足需求的框架。否則就有可能既無法滿足功能需求也無法滿足非功能需求,當然也包括性能需求。
一些這些框架將數據劃分成較小的塊。這些小數據塊由各個作業獨立處理。協調器管理所有這些獨立的子作業?在數據分塊是需要當心。
該數據快越小,就會產生越多的作業,這樣就會增加系統初始化作業和清理作業的負擔。
如果數據快太大,數據傳輸可能需要很長時間才能完成。這也可能導致資源利用不均衡,長時間在一台伺服器上運行一個大作業,而其他伺服器就會等待。
不要忘了查看一個任務的作業總數。在必要時調整這個參數。
最好實時監控數據塊的傳輸。在本機機型io的效率會更高,這么做也會帶來一個副作用就是需要將數據塊的冗餘參數提高(一般hadoop默認是3份)這樣又會反作用使得系統性能下降。
此外,實時數據流需要與批量數據處理的結果進行合並。設計系統時盡量減少對其他作業的影響。
大多數情況下同一數據集需要經過多次計算。這種情況可能是由於數據抓取等初始步驟就有報錯,或者某些業務流程發生變化,值得一提的是舊數據也是如此。設計系統時需要注意這個地方的容錯。
這意味著你可能需要存儲原始數據的時間較長,因此需要更多的存儲。
數據結果輸出後應該保存成用戶期望看到的格式。例如,如果最終的結果是用戶要求按照每周的時間序列匯總輸出,那麼你就要將結果以周為單位進行匯總保存。
為了達到這個目標,大數據系統的資料庫建模就要在滿足用例的前提下進行。例如,大數據系統經常會輸出一些結構化的數據表,這樣在展示輸出上就有很大的優勢。
更常見的是,這可能會這將會讓用戶感覺到性能問題。例如用戶只需要上周的數據匯總結果,如果在數據規模較大的時候按照每周來匯總數據,這樣就會大大降低數據處理能力。
一些框架提供了大數據查詢懶評價功能。在數據沒有在其他地方被使用時效果不錯。
實時監控系統的性能,這樣能夠幫助你預估作業的完成時間。
6. 數據可視化和展示中的性能技巧
精心設計的高性能大數據系統通過對數據的深入分析,能夠提供有價值戰略指導。這就是可視化的用武之地。良好的可視化幫助用戶獲取數據的多維度透視視圖。
需要注意的是傳統的BI和報告工具,或用於構建自定義報表系統無法大規模擴展滿足大數據系統的可視化需求。同時,許多COTS可視化工具現已上市。
本文將不會對這些個別工具如何進行調節,而是聚焦在一些通用的技術,幫助您能打造可視化層。
確保可視化層顯示的數據都是從最後的匯總輸出表中取得的數據。這些總結表可以根據時間短進行匯總,建議使用分類或者用例進行匯總。這么做可以避免直接從可視化層讀取整個原始數據。
這不僅最大限度地減少數據傳輸,而且當用戶在線查看在報告時還有助於避免性能卡頓問題。
重分利用大化可視化工具的緩存。緩存可以對可視化層的整體性能產生非常不錯的影響。
物化視圖是可以提高性能的另一個重要的技術。
大部分可視化工具允許通過增加線程數來提高請求響應的速度。如果資源足夠、訪問量較大那麼這是提高系統性能的好辦法。
盡量提前將數據進行預處理,如果一些數據必須在運行時計算請將運行時計算簡化到最小。
可視化工具可以按照各種各樣的展示方法對應不同的讀取策略。其中一些是離線模式、提取模式或者在線連接模式。每種服務模式都是針對不同場景設計的。
同樣,一些工具可以進行增量數據同步。這最大限度地減少了數據傳輸,並將整個可視化過程固化下來。
保持像圖形,圖表等使用最小的尺寸。
大多數可視化框架和工具的使用可縮放矢量圖形(SVG)。使用SVG復雜的布局可能會產生嚴重的性能影響。
7. 數據安全以及對於性能的影響
像任何IT系統一樣安全性要求也對大數據系統的性能有很大的影響。在本節中,我們討論一下安全對大數據平台性能的影響。
- 首先確保所有的數據源都是經過認證的。即使所有的數據源都是安全的,並且沒有針對安全方面的需求,那麼你可以靈活設計一個安全模塊來配置實現。
- 數據進過一次認證,那麼就不要進行二次認證。如果實在需要進行二次認證,那麼使用一些類似於token的技術保存下來以便後續繼續使用。這將節省數據一遍遍認證的開銷。
- 您可能需要支持其他的認證方式,例如基於PKI解決方案或Kerberos。每一個都有不同的性能指標,在最終方案確定前需要將其考慮進去。
- 通常情況下數據壓縮後進入大數據處理系統。這么做好處非常明顯不細說。
- 針對不同演算法的效率、對cpu的使用量你需要進行比較來選出一個傳輸量、cpu使用量等方面均衡的壓縮演算法。
- 同樣,評估加密邏輯和演算法,然後再選擇。
- 明智的做法是敏感信息始終進行限制。
- 在審計跟蹤表或登錄時您可能需要維護記錄或類似的訪問,更新等不同的活動記錄。這可能需要根據不同的監管策略和用戶需求個性化的進行設計和修改。
- 注意,這種需求不僅增加了數據處理的復雜度,但會增加存儲成本。
- 盡量使用下層提供的安全技術,例如操作系統、資料庫等。這些安全解決方案會比你自己設計開發性能要好很多。
8. 總結
本文介紹了各種性能方面的技巧,這些技術性的知道可以作為打造大數據分析平台的一般准則。大數據分析平台非常復雜,為了滿足這種類型系統的性能需求,需要我們從開始建設的時候進行考量。
本文介紹的技術准則可以用在大數據平台建設的各個不同階段,包括安全如何影響大數據分析平台的性能。