java大數據查詢
文件讀取:首先是一個文件上傳,數據入庫,10-200萬條不等,這里主要考慮到一次性讀取,JVM分配出來的棧內存不一定會夠(個人對內存這一塊還是處於一知半解的狀態,所以比較謹慎,若諸位大神有好的認知,希望評論留下地址分享一下),是依行讀取數據,設定一個批量值,當讀取的數據達到一定量之後,執行批量入庫操作,清空集合,再接著讀取。
//讀取文件內容
while((s = br.readLine())!=null){
//判斷是否達到單次處理量
if(num%leadingNum==0&&num!=0){
int a = stencDao.insertBatch(listBean);
if(a!=leadingNum){
flag = false;
}
//清空集合
listBean.clear();
}
String value = s.trim();
//將讀取到的內容放入集合中
if(!value.equals("")){
StencilCustomer bean = new StencilCustomer();
bean.setCustomerPhone(value);
bean.setLinkStencilId(id);
listBean.add(bean);
num ++;
}
}
數據處理:這里的思路也是將數據小化然後處理,這里使用了多線程,設定單個線程處理量,然後開啟多個線程處理,這里需要考慮你的伺服器的承載能力,如果線程開得太多了,處理不過來,會出現蹦死的情況。例如200萬數據,我開了20個線程,單個線程處理600條。
//建立一個線程池 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(
minTaskNumber, maxTaskNumber, 3L, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(minTaskNumber),
new ThreadPoolExecutor.DiscardOldestPolicy());
//當正在執行的線程數達到最大執行線程數的時候等待
boolean flag = true;
while(flag){
Thread.sleep(1000);//休眠2ms查詢一次
int c = threadPool.getActiveCount();//線程池中活動中的線程數量
if(c<maxTaskNumber){
flag = false;
}
}
上面的代碼是我對線程池的一個控制,控制伺服器一直最大線程執行,Thread.sleep(1000);用while的時候,這個休眠最好不要去掉,去掉之後很影響執行效率
B. JAVA開源大數據查詢分析引擎有哪些方案
在大數據處理分析過程中常用的六大工具:HadoopHadoop是一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop還是可伸縮的,能夠處理PB級數據。此外,Hadoop依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。HPCCHPCC,(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了逗重大挑戰項目:高性能計算與通信地的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及網路連接能力。StormStorm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。ApacheDrill為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體會近日發起了一項名為逗Drill地的開源項目。ApacheDrill實現了Google'sDremel.據Hadoop廠商MapRTechnologies公司產品經理TomerShiran介紹,逗Drill地已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。RapidMinerRapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
C. java資料庫一次性取出大數據量的數據用arraylist還是linklist
取出大數據量的數據和用arraylist還是linklist沒有任何關系!
看你的關注點在哪裡,如果數據量夠大回,你要考慮查詢答時間會不會太長,你能不能接受
ArrayList和LinkList的區別是底層數據結構不一樣。
ArrayList底層用得是數組,查詢快。
LinkedList底層是自定義數據體,增刪快。
所以你要如何處理這個數據,可以根據不同的特別來決定使用哪一個?
如果僅僅只是作為一個接收體,並不對數據做任何處理,那麼兩者都一樣
D. springboot + mybatis java 怎麼處理大數據分批查詢
springboot + mybatis java 怎麼處理大數據分批查詢
這里用到spring-boot-starter基礎和spring-boot-starter-test用來做單元測試驗證數據訪問 引入連接內mysql的必要依賴mysql-connector-java 引入整合容MyBatis的核心依賴mybatis-spring-boot-starter 這里不引入spring-boot-starter-jdbc依賴
E. java 大數據怎麼做
Java是編程語言;
大數據是一個概念,包含的技術較多,比如Hadoop、Spark、Storm等;
學習大數據先要學習Java,Java是基礎,而大數據比較核心的兩個課程是HADOOP、SPARK。
F. java如何查看有哪些大數據佔用
用位列rownum分頁
如果表還是很大的話,建議分區管理,並對表進行細分,盡量不要直接操作大表
不要全取出放到rs里,容易內存溢出
G. Java如何處理大數據的
文件讀取:首先是一個文件上傳,數據入庫,10-200萬條不等,這里主要考慮到一次性讀取,JVM分配出來的棧內存不一定會夠(個人對內存這一塊還是處於一知半解的狀態,所以比較謹慎,若諸位大神有好的認知,希望評論留下地址分享一下),是依行讀取數據,設定一個批量值,當讀取的數據達到一定量之後,執行批量入庫操作,清空集合,再接著讀取。
//讀取文件內容
while((s = br.readLine())!=null){
//判斷是否達到單次處理量
if(num%leadingNum==0&&num!=0){
int a = stencDao.insertBatch(listBean);
if(a!=leadingNum){
flag = false;
}
//清空集合
listBean.clear();
}
String value = s.trim();
//將讀取到的內容放入集合中
if(!value.equals("")){
StencilCustomer bean = new StencilCustomer();
bean.setCustomerPhone(value);
bean.setLinkStencilId(id);
listBean.add(bean);
num ++;
}
}
數據處理:這里的思路也是將數據小化然後處理,這里使用了多線程,設定單個線程處理量,然後開啟多個線程處理,這里需要考慮你的伺服器的承載能力,如果線程開得太多了,處理不過來,會出現蹦死的情況。例如200萬數據,我開了20個線程,單個線程處理600條。
//建立一個線程池 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(
minTaskNumber, maxTaskNumber, 3L, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(minTaskNumber),
new ThreadPoolExecutor.DiscardOldestPolicy());
//當正在執行的線程數達到最大執行線程數的時候等待
boolean flag = true;
while(flag){
Thread.sleep(1000);//休眠2ms查詢一次
int c = threadPool.getActiveCount();//線程池中活動中的線程數量
if(c<maxTaskNumber){
flag = false;
}
}
上面的代碼是我對線程池的一個控制,控制伺服器一直最大線程執行,Thread.sleep(1000);用while的時候,這個休眠最好不要去掉,去掉之後很影響執行效率
H. java 大數據 指多少條數據
我想你問的是在資料庫中的表要有多少條才能算大數據。其實您清楚,如果表中的數據超過千萬以上,再好索引也會導致查詢變慢。現在的海量數據一般都是PT級的,數據存放也不僅限於傳統的關系型資料庫。
I. java遍歷大數據量比較一個內容,怎樣寫效率會快點
我覺得比較靠譜的就是先對大數據量的數據進行索引,縮小比較的范圍,比如原來可能是:
1,2,3,4,5,6,7,8,9,10...
這是原始數據,那麼我們可以做索引(當然不同的數據索引方式要重新設計合理的索引方案)
比如
1-5: [1,2,3,4,5]
6-10: [6,7,8,9,10]
.....
此時需要比較2, 直接定位到了 1-5的索引,那麼我們的比較次數就變少了,大概就是這個思想,縮小比較范圍
J. java 從資料庫中讀取大數據
這樣每次去讀取上百萬條數據,不崩掉才怪,
我的想法是,你分批去查,然後分批導出,
類似於分頁,每1000 或者更多為一批
按批次去執行,然後做一個進度條,按有多少批次為進度數進行導出
這樣應該會好很多
還可以做個緩存機制,按批次進行存儲,下次拿數據就直接從緩存中獲取