大數據,數據挖掘在交通領域有哪些應用

交通領域大數據分析和應用的場景會相當多,這裡面要注意兩點,一個是大數據本身的技術處理平台,一個是數據分析和挖掘演算法。具體場景當時寫過點內容,如下:
對於公交線路規劃和設計是一個大數據潛在的應用場景,傳統的公交線路規劃往往需要在前期投入大量的人力進行OD調查和數據收集。特別是在公交卡普及後可以看到,對於OD流量數據完全可以從公交一卡通中採集到相關的交通流量和流向數據,包括同一張卡每天的行走路線和換乘次數等詳細信息。對於一個上千萬人口的大城市而言,每天的流量數據都會相當大,單一分析一天的數據可能沒有相關的價值,而分析一個周期的數據趨勢變化則會相當有價值。結合交通流量流向數據趨勢變化,可以很好的幫助公交部門進行公交運營線路的調整,換乘站的設計等很多內容。這個方法可能很早就有人想到,但是在公交卡沒有普及或海量數據處理和計算能力沒有跟上的時候確實很難實際落地操作,而現在則是完全可以落地操作的時候了。
從單一的公交流量流向數據動態分析僅僅是一個方面,大數據往往更加強調相關性分析。比如對於在某一個時間段內公交流量和流向數據發生明細的趨勢變化的時候,這個趨勢變化的究竟和哪些潛在的大事件或其它影響因素的變化存在相關性,如何去分析這些相關性並做出正確的應對。舉個簡單的例子來說,當市中心區內的房屋租金持續增長的時候一定會影響到交通流的變化,很多人可能會搬離到更遠的地方去居住,自然會形成更多的新增公交流量和流向信息。在《大數據時代》裡面談到更多的會關心相關性而不是因果只是一個方面的內容,實際上往往探索因果仍然很重要,就拿尿片和啤酒的例子來說看起來很簡單,但是究竟是誰發現了這種相關性才更加重要,發現相關性的過程往往是從果尋因的過程,否則你也很難真正就確定是具備相關性。
其次就智能交通來說,現在的智慧交通應用往往已經能夠很方面的進行整個大城市環境下的交通狀況監控並發布相應的道路狀況信息。在GPS導航中往往也可以實時的看到相應的擁堵路況等信息,而方便駕駛者選擇新的路線。但是這仍然是一種事後分析和處理的機制,一個好的智能導航和交通流誘導系統一定是基於大量的實時數據分析為每個車輛給出最好的導航路線,而不是在事後進行處理。對於智能交通中的交通流分配和誘導等模型很復雜,而且面對大量的實時數據採集,根據模型進行實時分分析和計算,給出有價值的結果,這個在原有的信息技術下確實很難解決。隨著物聯網和車聯網,分布式計算,基於大數據的實時流處理等各種技術的不斷城市,智能的交通導航和趨勢分析預測將逐步成為可能。
還有一個在國外大片中經常能夠看到的就是實時的車輛追蹤,隨著智慧城市的建設,城市裡面到處都是攝像頭採集數據,當鎖定一個車輛後如何根據車輛的特徵或車牌號等信息,實時的追蹤到車輛的行走路線和位置。這裡面往往需要實時的視頻數據採集,採集數據的實時分析和比對,給出相應的參考信息和數據。這個個人認為是具有相當大的難度,要知道對於視頻流和圖像信息的比對和分析往往更加耗費計算資源,需要更長的計算周期,要從城市成千上萬個攝像頭裡面採集數據並進行實時分析完全滿足大數據常說的海量數據,異構數據,速度和價值等四個維度的特徵。基於車輛能夠做到,基於人當然同樣也可以做到,希望這類應用能夠逐步的出現,至少現在從硬體水平能力和技術基礎上已經具備這種大數據應用的能力。
-

Ⅱ 根據 大數據在交通方面可以有哪些應用

交通方面的大數據用的還是比較多的。只是常在人們的身邊,人們忽略了而已。典型的就是網路地圖工具,那就是利用大數據分析的出來的路況信息。幾乎每個人都有用過吧?

Ⅲ 大數據技術在城市交通檢測中有哪些常見應用

大數據在交通行業的應用還是比較多的,典型的就是網路地圖的工具,當你查詢線路的時候內,網路地圖容會給你推薦最佳的線路,大城市會給你最不容易堵車的線路,這就是根據大數據分析的結果而得出的,也是最典型的交通行業的大數據了。

Ⅳ 大數據和智慧交通有哪些應用的案例

大數據方面的應用案例

在醫療方面,紐約的mountsinai醫院利用數千名患者的數據、歷年匯報的流感爆發數據等數據與病毒的變異過程做交叉比對。通過這種工作,科學家和醫生可以預測病毒如何傳播,以及對抗這些病毒的最佳途徑;甚至有可能使用預測分析來判斷病毒的傳播方式,然後採取行動來限制這一傳播。據說這家醫院有望在未來阻止流感的發生。

在交通方面,浙江某城市與英特爾合作,安裝了1000個數字監控設備,100個智能監測點系統,超過300個檢查點的電子警察,和500多個視頻監控系統。通過更有效地監測交通和擁堵數據,改善交通流量,減少道路交通事故。

在廢物處理方面, 英國曼徹斯特垃圾處理局有一套系統,能夠利用數據使得產生的垃圾被盡可能多的再次利用。通過對來自不同地區的卡車進出加工廠時進行稱重,能夠了解每個地區所產生的垃圾數量。這些數據幫助當局出台了相應的政策,鼓勵那些特定的社區更好的垃圾回收和垃圾減量。

在建築方面, 住房慈善機構hact從400,000座住房中持續不斷地收集數據,並進行了各種數據分析。通過數據來發現設計、建造、布局中存在的潛在問題,進而在建造新的樓宇時優化相關的參數,避免這些問題,改進政府保障房的的維修,規劃空間合理使用。

智能應用服務,Google提供的大數據分析智能應用包括客戶情緒分析、交易風險(欺詐分析)、產品推薦、消息路由、診斷、客戶流失預測、法律文案分類、電子郵件內容過濾、政治傾向預測、物種鑒定等多個方面。據稱,大數據已經給Google每天帶來2300萬美元的收入。例如,一些典型應用如下:

(1)基於Map Rece,Google的傳統應用包括數據存儲、數據分析、日誌分析、搜索質量以及其他數據分析應用。

(2)基於Dremel系統, Google推出其強大的數據分析軟體和服務 — BigQuery,它也是Google自己使用的互聯網檢索服務的一部分。Google已經開始銷售在線數據分析服務,試圖與市場上類似亞馬遜網路服務(Amazon Web Services)這樣的企業雲計算服務競爭。這個服務,能幫助企業用戶在數秒內完成萬億位元組的掃描。

(3)基於搜索統計演算法,Google推出搜索引擎的輸寫糾錯、統計型機器翻譯等服務。

(4)Google的趨勢圖應用。通過用戶對於搜索詞的關注度,很快的理解社會上的熱點是什麼。對廣告主來說,它的商業價值就是很快的知道現在用戶在關心什麼,他們應該在什麼地方投入一個廣告。據此,Google公司也開發了一些大數據產品,如「Brand Lift in Adwords」、「Active GRP」等,以幫助廣告客戶分析和評估其廣告活動的效率。

(5)Google Instant。輸入關鍵詞的過程,Google
Instant 會邊打邊預測可能的搜索結果。

谷歌的大數據平台架構仍在演進中,追去的目標是更大數據集、更快、更准確的分析和計算。這將進一步引領大數據技術發展的方向。

在競選方面,直到2012年,奧巴馬的數據團隊對數以千萬計的選民郵件進行了大數據挖掘,精確預測出了更可能擁護奧巴馬的選民類型,並進行了有針對性的宣傳,從而幫助奧巴馬成為了美國歷史上唯一一位在競選經費處於劣勢下實現連任的總統。只要數據量夠大,夠及時,挖掘夠深刻,就可以洞悉每個選民的投票幾率。

在教育方面,"以物聯網、雲計算等綜合技術的成熟為基礎,在學生管理資料庫中挖掘出有價值的數據,經過過程性和綜合性的考慮,找到學生各種行為之間的內在聯系,考量背後的邏輯關系,並作出恰當的教學決策。以某集團最新出版的全球少兒美語旗艦課程為例,引入了首款應用於少兒英語學習領域的MyEnglishLab在線學習輔導系統(以下簡稱MEL),應用大數據技術全程實時分析學生個體和班級整體的學習進度、學情反饋和階段性成果,從而及時找到問題所在對症下葯,實現對學習過程和結果的動態管理。

智慧交通的應用案例

根據ITS114的不完全統計,截至2015年12月31日,包括城市智慧交通和高速公路機電市場的全年千萬項目統計規模為182.5億,其中主要分為四大市場1.交通管控市場千萬項目規模為84.24億。2.智慧交通/智能運輸市場千萬項目規模為20.33億。3.高速公路機電市場千萬項目規模為75.8億。4.平安城市千萬項目規模為56.6億。以上四個市場都有著很多的智慧交通方面的應用案例。

具體的在交通管控市場方面, 當前各個省積極構建的交通運行監測與應急指揮系統,還有圍繞著視頻、圖像分析,從而實現在治安、交通、工業製造、汽車、人工智慧等等諸多領域的應用亦是智慧交通的典型案例。如深圳榕享的"交通模擬與智能管控機器人"可實時採集視頻檢測數據與線圈檢測數據,將採集的交通流數據、信號配時等數據輸入到建立的模擬路網模型中,進行實時的交通系統模擬。通過一體化交通模擬模型,機器人能快速找出路網擁堵點以及分析路網的常發性擁堵點,並對交通流運營狀況的演變進行預測和分析。在交通模擬與智能管控機器人平台上,還可對城市的任意交叉口的交通環境進行設置,周邊居民可將相關建議"告知"機器人,實時模擬交叉口改良效果,實現全民參與、全民實踐、全民創新的交通管理新模式。

智慧交通/運輸方面各種「專車」「快車」「拼車」「代駕」平台類和軟體數據類的實例比比皆是,如我們都熟知的「滴滴快遞」「uber"「e代駕」等app應用。

交通工具新型技術案例方面:如無人駕駛、自動駕駛、智能車等等;在2015年12月互聯網大會上李彥宏展示的無人車,李書福展現的自動駕駛技術都體現了當前智能交通工具的發展。 更近一點的是,汽車電子標識、ETC、車路協同。2015年的新能源客車市場呈爆發性增長,新能源客車銷量達到37363輛,同比增長213.19%,同時2015年國務院印發《新能源公交車推廣應用考核辦法(試行)》、《電動汽車充電基礎設施發展指南》等等政策文件,可預見的是新能源汽車將會造就一個巨大的市場,建立在新能源汽車之上的車聯網也將搭上順風車。

平安城市也有很多已經成型的智慧交通案例。平安城市是基於GIS數字地圖技術,高度整合治安監控、智能交通、數字城管、應急指揮等子系統,改變傳統的靜態管理和單點管理,實現實時、動態的聯動管理新模式,實現了整個城市的治安、交通、城管、應急聯動等各個職能部門的聯動,建立了高效的城市部門聯動機制,提高了城市的集成化、智慧化管理水平。根據高清視頻監控系統的特點和應用需求,結合當前與今後一定時期內圖像監控系統與圖像應用系統的發展需要,建設一套先進的平安城市綜合應用平台,為指揮調度、調查取證、應急處置、交通管理等多種後台應用提供及時、可靠的視頻圖像信息,服務於實戰。市面上常見的平安城市系統具備的主要功能大部分都有:人臉卡口功能;交通事件檢測功能;智能檢索功能;道路違法抓拍功能;車輛稽查布控功能;非現場執法;分析研判功能;交通事態監控功能;視頻質量檢測功能;智能應用管理功能;數據格式及通信功能;遠程式控制制功能;指揮調度功能;勤務管理功能; 設備運行狀態監測功能。

Ⅳ 交通大數據可以解決城市擁堵嗎

以往針對城市交通擁堵的處理方式,各個城市通常是採用優化市內交通體系、公共交通優先發展等傳統的硬體解決方案。這些方式能在一定程度上緩解交通擁堵,但是不能處理一些突發事件導致的擁堵,也不能從根本原因上去避免和解決擁堵。
因此,在既有的交通環境現狀下,怎樣實現提高通行速度成為城市管理者的新研究課題。城市大數據大腦正是在這種情況下產生的解決方案。以城市交通為例,它的大概思路是,全面監控和採集城市交通的大數據,通過先進的演算法自動優化調整交通資源,從而達到提高城市交通通行速度和效率的可能。需要五大系統才能高效運轉——超大規模計算平台、數據採集系統、數據交換中心、開放演算法平台、數據應用平台。
據悉,在杭州蕭山區的部分路段試點中,城市大腦通過智能調節紅綠燈,初步將車輛通行速度提升了3%至11%。這相當於把高峰期平均時速提高到21.8-23.5公里,試點的成效還是非常不錯的。城市數據大腦的未來還不僅限於現有的5萬路視頻攝像頭。它還將結合手機地圖、道路線圈記錄的車輛行駛速度和數量,公交車、計程車等運行數據,真正成為城市交通的大數據中心。
城市大腦即可在一個虛擬的數字城市中構建多種演算法模型,通過機器學習不斷迭代優化,計算出更「聰明」更有效率的方案。這些計算的背後都離不開一個強大的數據中心作為數據計算的支撐。據悉,國內像華為、銳捷都能為交通大數據的數據中心建設提供頂級配置的核心交換機,能夠滿足國內一線城市的交通大數據數據中心的建設需求,為城市提供強有力的支撐。

Ⅵ 城市交通大數據可視化解決方案

作者 | 網路大數據

如今,城市交通擁堵狀況日益嚴重。雖說智能交通布局在不斷地完善,但交通管理仍舊收效甚微。數據獨立存儲難以融合應用、數據內在規律難尋、數據缺乏深度挖掘等諸多問題,其困難重重,該如何解決呢?不妨看看城市交通大數據可視化解決方案吧!

交通動態看得見,交通管理更簡便

「大數據可視化」能夠將城市運行核心系統的各項關鍵數據進行可視化呈現,通過貼合實戰,從感官、操作、應用及數據四個維度解決交警個性化需求,構建業務場景深度應用,從而打通數據到決策的最短路徑。交通管理者可以根據實戰場景,利用各類圖表、趨勢圖、視覺效果將龐雜枯燥的數據展現出來,進而深度挖掘內在數據規律,以此指導決策,助力城市交通健康的發展。

系統架構分明,場景動態清晰

通過前端感知系統,實時獲取城市交通動態信息。將各個子系統的數據錄入數據可視化平台進行融合、分析後,呈現出不同場景下的交通信息個性化視圖,從而為城市交通的管理和調控提供指導依據。

01強大的數據源整合能力

數據接入靈活多變,支持靜態數據、API、資料庫、本地數據四種數據對接模式,其中資料庫類型支持主流的MySQL、Oracle、MPP,滿足龐大、繁雜、多樣數據的集中匯聚展示,從而實現不單單是海量數據表面的業務處理而是通過清洗雜亂數據,優化數據結構來進行深層次的信息挖掘,發現數據的真正含義。

02豐富的圖表組件搭建工具

提供豐富多樣化的圖表組件工具,支持包括圓餅圖、極區圖、地圖、柱狀圖等超過1100項效果配置,用戶可以根據實際應用需求進行組合使用。通過結合大屏形成的組件搭配展示給人一種視覺沖擊,不僅僅是簡單的把數字用圖表表示,而是幫助用戶,發現數據背後的規律。

03多樣化的場景模板

數據可視化平台提供多種應用場景模板,合理運用搭配色彩、布局以及組件,解決用戶設計難題。簡單的修飾即可使用,業務全景一目瞭然。

04圖形化的編輯界面

用戶也可以通過友好的圖形化編輯模式完成樣式編輯和數據配置,創建屬於自己的個性化需求模板,並且可以進行分享,無需編程能力就能輕松搭建可視化應用。

數據可視功能強大,應用場景遍地開花

從多個角度進行日常路網運行監測與協調管理、交通警情分析研判、重點人車管理,以滿足常態下交通監測監管、應急狀態下協同處置指揮調度的需要,滿足交通行業各個場景的應用需求。

01交通態勢可視化

通過對多項核心交通數據進行分析,實現交通態勢評估,輔助交通管理部門依據交通評估結果動態跟蹤、監測擁堵狀態和預測變化趨勢,為交通規劃、交通優化的提供量化指標依據。

02設施運維管理

可視化運維基於系統中各種設備的運行狀況,能及時直觀的反映故障點位信息,包括設備在線情況、完好率以及設備故障類型,幫助運維人員解決問題、提高效率,讓運維由繁化簡,更加有效的保障智能交通系統的順暢運行。

03重點車輛管控

通過構建重點車輛管控場景,可以幫助用戶直觀的了解到區域內所有重點車輛的類型和數量以及發放的通行證數量,實現對嫌疑車輛、布控車輛、涉案車輛、重點車輛等黑名單車輛實時監控告警強化交通管控力度。

04交通事件研判分析

針對歷史交通流、交通違法、交通事故等數據進行分析匯總整合、專題化分析,達到科學細化管理目的,為交通管理部門在交通組織、警力部署、設備布設等方面的優化提供決策依據。

以上便是城市交通大數據可視化解決方案的有關介紹。

該方案不僅打通了各交警業務子系統間的數據壁壘,將交通大數據真正的價值發掘出來;更以豐富的視圖展示滿足了實戰應用數據可視化場景需求,交通管理部門可通過清晰可視的交通動態圖進行車流管控及警力調度,為城市交通的管理與健康發展帶來極大的改善。

Ⅶ 如何將手機信令等大數據應用到城市交通規劃實踐中

您好,希望以下回答能幫助您
你要把你的問題說清楚才可以呀~否則別人沒法幫助你啊!專
在網路提問屬頁面的頂端都可以看到「我要提問」的提問輸入框,可以在提問輸入框中輸入您的問題,或直接點擊「我要提問」進入提問頁,在這里您需要描述清楚您的問題,為了更好地得到答案,您也可以對問題進行更詳細的描述並懸賞,然後把你疑惑的問題寫出來,就可以啦!