⑴ 何謂大數據大數據的特點,意義和缺陷.

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

大數據,更多的功能是分析過去,提醒現在,展望未來。廣泛應用於商業領域,藉以實現精準營銷,預測趨勢,實現商業利益的最優與最大。體現的價值為:

(1)利用大數據針對大量消費者的消費習慣,精準提供產品或服務;

(2)利用大數據做服務轉型,做小而美模式;

(3)不能充分利用大數據價值的企業,將會在互聯網壓力之下搖搖欲墜。

國家通過結合大數據和高性能的分析,是指效率更加提高,同時也能降低國家運行成本。如:

(1)為成千上萬的車輛規劃實時交通路線,躲避擁堵;

(2)及時解析問題和缺陷的根源,是制度更加完善。

(3)使用點擊流分析和數據挖掘來規避欺詐行為。

大數據的缺陷:

企業遭到黑客攻擊,客戶的資料大量非法流出,再利用大數據分析挖掘,人群進行分類排除,從而讓人更容易受騙。

(1)大數據技術總結擴展閱讀:

2016年3月17日,《中華人民共和國國民經濟和社會發展第十三個五年規劃綱要》發布,其中第二十七章「實施國家大數據戰略」提出:把大數據作為基礎性戰略資源,全面實施促進大數據發展行動,加快推動數據資源共享開放和開發應用,助力產業轉型升級和社會治理創新。

具體包括:加快政府數據開放共享、促進大數據產業健康發展。

⑵ 大數據技術有哪些

大數據技術,就是從各種類型的數據中快速獲得有價值信息的技術。大數據領域已經涌現出了大量新的技術,它們成為大數據採集、存儲、處理和呈現的有力武器。

大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。

六、大數據展現與應用技術

大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。在我國,大數據將重點應用於以下三大領域:商業智能、政府決策、公共服務。例如:商業智能技術,政府決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統),大規模基因序列分析比對技術,Web信息挖掘技術,多媒體數據並行化處理技術,影視製作渲染技術,其他各種行業的雲計算和海量數據處理應用技術等。

⑶ 大數據分析的技術包括哪些

與傳統的在線聯機分析處理OLAP不同,對大數據的深度分析主要基於大規模的機器學習技回術,一般而言,機器學答習模型的訓練過程可以歸結為最優化定義於大規模訓練數據上的目標函數並且通過一個循環迭代的演算法實現。
1、編程語言:Python/R
2、資料庫MySQL、MongoDB、Redis等
3、數據分析工具講解、數值計算包、Pandas與資料庫... 等
4、進階:Matplotlib、時間序列分析/演算法、機器學習... 等

⑷ 大數據技術包括哪些

大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。

1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。

2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,

3、基礎架構:雲存儲、分布式文件存儲等。

4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。

5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

7、模型預測:預測模型、機器學習、建模模擬。

8、結果呈現:雲計算、標簽雲、關系圖等。

⑸ 以大數據時代為題寫一篇年終總結

進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數
大數據時代來臨
據,並命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」
大數據時代,什麼最貴?
十年前,葛大爺曾說過,「21世紀什麼最貴?」——「人才」,深以為然。只是,十年後的今天,大數據時代也帶來了身價不斷翻番的各種數據。由於急速拓展的網路帶寬以及各種穿戴設備所帶來的大量數據,數據的增長從未停歇,甚至呈井噴式增長。[7]
一分鍾內,微博推特上新發的數據量超過10萬;社交網路「臉譜」的瀏覽量超過600萬……
這些龐大數字,意味著什麼?
它意味著,一種全新的致富手段也許就擺在面前,它的價值堪比石油和黃金。
事實上,當你仍然在把微博等社交平台當作抒情或者發議論的工具時,華爾街的斂財高手們卻正在挖掘這些互聯網的「數據財富」,先人一步用其預判市場走勢,而且取得了不俗的收益。
讓我們一起來看看——他們是怎麼做的。
這些數據都能幹啥。具體有六大價值:
●1、華爾街根據民眾情緒拋售股票;
●2、對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;
●3、銀行根據求職網站的崗位數量,推斷就業率;
●4、投資機構搜集並分析上市企業聲明,從中尋找破產的蛛絲馬跡;
●5、美國疾病控制和預防中心依據網民搜索,分析全球范圍內流感等病疫的傳播狀況;
●6、美國總統奧巴馬的競選團隊依據選民的微博,實時分析選民對總統競選人的喜好。[1]
可視化

「數據是新的石油。」亞馬遜前任首席科學家Andreas Weigend說。Instagram以10億美元出售之時,成立於1881年的世界最大影像產品及服務商柯達正申請破產。
大數據是如此重要,以至於其獲取、儲存、搜索、共享、分析,乃至可視化地呈現,都成為了當前重要的研究課題[1] 。
「當時時變幻的、海量的數據出現在眼前,是怎樣一幅壯觀的景象?在後台注視著這一切,會不會有接近上帝俯視人間星火的感覺?」
這個問題我曾請教過劉建國,中國著名的搜索引擎專家。劉曾主持開發過國內第一個大規模中英文搜索引擎系統「天網」。
要知道,劉建國曾任至網路的首席技術官,在這樣一家每天需應對網民各種搜索請求1.7億次(2013年約為8.77億次)的網站中,如果只是在後台靜靜端坐,可能片刻都不能安心吧。網路果然在提供搜索服務之外,逐漸增添了網路指數,後又建立了基於網民搜索數據的重要產品「貼吧」及網路統計產品等。
劉建國沒有直接回答這個問題,他想了很久,似乎陷入了回憶,嘴角的笑容含著詭秘。
倒是有公司已經在大數據中有接近上帝俯視的感覺,美國洛杉磯就有企業宣稱,他們將全球夜景的歷史數據建立模型,在過濾掉波動之後,做出了投資房地產和消費的研究報告。
在數據可視化呈現方面,我最新接收到的故事是,一位在美國思科物流部門工作的朋友,很聰明的印度裔小夥子,被Facebook高價挖角,進入其數據研究小組。他後來驚訝地發現,裡面全是來自物流企業、供應鏈方面的技術人員和專家,「Facebook想知道,能不能用物流的角度和流程的方式,分析用戶的路徑和行為。」