大數據spark企業級實戰 好么

我個人認為大數據相關的技能知識分為三塊:
1、基礎技術平台的搭建和管理
2、數據分內析容、挖掘、機器學習等數據應用技能
3、分析結果展現技術
其中2是非常需要數學(主要是統計學)和演算法基礎的,也是我認為最有含金量的部分。 我自己也是個純粹的工程師,正在努力學習統計和R語言。同勉。

❷ 分析如何成為一名大數據開發工程師

1、認識大數據

大數據開發工程師,首先你得熟悉關系型資料庫,比如Oracle或者MySQL,熟悉之後,有利於數據倉庫的開發;再次熟悉Hadoop,這個都是現在大數據領域中用的最多的一個技術,它的HDFS可以實現分布式存儲,Yarn是一個優秀的資源調度框架

2、大數據所需技能要求

必須掌握的技能:

java高級(虛擬機、並發)、Linux 基本操作、Hadoop(HDFS+MapRece+Yarn )、 HBase(JavaAPI操作+Phoenix )、Hive(Hql基本操作和原理理解)、 Kafka、Storm/JStorm、Scala、python、Spark (Core+sparksql+Spark streaming ) 、輔助小工具(Sqoop/Flume/Oozie/Hue等)

❸ 大數據培訓課程大綱去哪裡學

大數據開發工程師課程體系——Java部分。
第一階段:靜態網頁基礎
1、學習Web標准化網頁製作,必備的HTML標記和屬性
2、學習HTML表格、表單的設計與製作
3、學習CSS、豐富HTML網頁的樣式
4、通過CSS布局和定位的學習、讓HTML頁面布局更加美觀
5、復習所有知識、完成項目布置
第二階段:JavaSE+JavaWeb
1、掌握JAVASE基礎語法
2、掌握JAVASE面向對象使用
3、掌握JAVASEAPI常見操作類使用並靈活應用
4、熟練掌握MYSQL資料庫的基本操作,SQL語句
5、熟練使用JDBC完成資料庫的數據操作
6、掌握線程,網路編程,反射基本原理以及使用
7、項目實戰 + 擴充知識:人事管理系統
第三階段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握註解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、項目實戰+擴充知識:項目案例實戰
POI基本使用和通過註解封裝Excel、druid連接池資料庫監聽,日誌Log4j/Slf4j
第四階段:企業級開發框架
1、熟練掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、項目實戰:內容管理系統系統、項目管理平台流程引擎activity,爬蟲技術nutch,lucene,webService CXF、Tomcat集群 熱備 MySQL讀寫分離
以上Java課程共計384課時,合計48天!
大數據開發工程師課程體系——大數據部分
第五階段:大數據前傳
大數據前篇、大數據課程體系、計劃介紹、大數據環境准備&搭建
第六階段:CentOS課程體系
CentOS介紹與安裝部署、CentOS常用管理命令解析、CentOS常用Shell編程命令、CentOS階段作業與實戰訓練
第七階段:Maven課程體系
Maven初識:安裝部署基礎概念、Maven精講:依賴聚合與繼承、Maven私服:搭建管理與應用、Maven應用:案列分析、Maven階段作業與實戰訓練
第八階段:HDFS課程體系
Hdfs入門:為什麼要HDFS與概念、Hdfs深入剖析:內部結構與讀寫原理、Hdfs深入剖析:故障讀寫容錯與備份機制、HdfsHA高可用與Federation聯邦、Hdfs訪問API介面詳解、HDFS實戰訓練、HDFS階段作業與實戰訓練
第九階段:MapRece課程體系
MapRece深入剖析:執行過程詳解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗詳解、MapRece編程基礎、MapRece編程進階、MapRec階段作業與實戰訓練
第十階段:Yarn課程體系
Yarn原理介紹:框架組件流程調度
第十一階段:Hbase課程體系
Yarn原理介紹:框架組件流程調度、HBase入門:模型坐標結構訪問場景、HBase深入剖析:合並分裂數據定位、Hbase訪問Shell介面、Hbase訪問API介面、HbaseRowkey設計、Hbase實戰訓練
第十二階段:MongoDB課程體系
MongoDB精講:原理概念模型場景、MongoDB精講:安全與用戶管理、MongoDB實戰訓練、MongoDB階段作業與實戰訓練
第十三階段:Redis課程體系
Redis快速入門、Redis配置解析、Redis持久化RDB與AOF、Redis操作解析、Redis分頁與排序、Redis階段作業與實戰訓練
第十四階段:Scala課程體系
Scala入門:介紹環境搭建第1個Scala程序、Scala流程式控制制、異常處理、Scala數據類型、運算符、Scala函數基礎、Scala常規函數、Scala集合類、Scala類、Scala對象、Scala特徵、Scala模式匹配、Scala階段作業與實戰訓練
第十五階段:Kafka課程體系
Kafka初窺門徑:主題分區讀寫原理分布式、Kafka生產&消費API、Kafka階段作業與實戰訓練
第十六階段:Spark課程體系
Spark快速入門、Spark編程模型、Spark深入剖析、Spark深入剖析、SparkSQL簡介、SparkSQL程序開發光速入門、SparkSQL程序開發數據源、SparkSQL程序開DataFrame、SparkSQL程序開發DataSet、SparkSQL程序開發數據類型、SparkStreaming入門、SparkStreaming程序開發如何開始、SparkStreaming程序開發DStream的輸入源、SparkStreaming程序開發Dstream的操作、SparkStreaming程序開發程序開發--性能優化、SparkStreaming程序開發容錯容災、SparkMllib 解析與實戰、SparkGraphX 解析與實戰
第十七階段:Hive課程提體系
體系結構機制場景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive階段作業與實戰訓練
第十八階段:企業級項目實戰
1、基於美團網的大型離線電商數據分析平台
2、移動基站信號監測大數據
3、大規模設備運維大數據分析挖掘平台
4、基 於互聯網海量數據的輿情大數據平台項目
以上大數據部分共計學習656課時,合計82天!
0基礎大數據培訓課程共計學習130天。
以上是我們加米穀的大數據培訓課程大綱!

❹ 大數據培訓的內容是什麼有哪些方式

大數據開發工程師課程體系——Java部分。
第一階段:靜態網頁基礎
1、學習Web標准化網頁製作,必備的HTML標記和屬性
2、學習HTML表格、表單的設計與製作
3、學習CSS、豐富HTML網頁的樣式
4、通過CSS布局和定位的學習、讓HTML頁面布局更加美觀
5、復習所有知識、完成項目布置
第二階段:JavaSE+JavaWeb
1、掌握JAVASE基礎語法
2、掌握JAVASE面向對象使用
3、掌握JAVASEAPI常見操作類使用並靈活應用
4、熟練掌握MYSQL資料庫的基本操作,SQL語句
5、熟練使用JDBC完成資料庫的數據操作
6、掌握線程,網路編程,反射基本原理以及使用
7、項目實戰 + 擴充知識:人事管理系統
第三階段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握註解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、項目實戰+擴充知識:項目案例實戰
POI基本使用和通過註解封裝Excel、druid連接池資料庫監聽,日誌Log4j/Slf4j
第四階段:企業級開發框架
1、熟練掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、項目實戰:內容管理系統系統、項目管理平台流程引擎activity,爬蟲技術nutch,lucene,webService CXF、Tomcat集群 熱備 MySQL讀寫分離
以上Java課程共計384課時,合計48天!
大數據開發工程師課程體系——大數據部分
第五階段:大數據前傳
大數據前篇、大數據課程體系、計劃介紹、大數據環境准備&搭建
第六階段:CentOS課程體系
CentOS介紹與安裝部署、CentOS常用管理命令解析、CentOS常用Shell編程命令、CentOS階段作業與實戰訓練
第七階段:Maven課程體系
Maven初識:安裝部署基礎概念、Maven精講:依賴聚合與繼承、Maven私服:搭建管理與應用、Maven應用:案列分析、Maven階段作業與實戰訓練
第八階段:HDFS課程體系
Hdfs入門:為什麼要HDFS與概念、Hdfs深入剖析:內部結構與讀寫原理、Hdfs深入剖析:故障讀寫容錯與備份機制、HdfsHA高可用與Federation聯邦、Hdfs訪問API介面詳解、HDFS實戰訓練、HDFS階段作業與實戰訓練
第九階段:MapRece課程體系
MapRece深入剖析:執行過程詳解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗詳解、MapRece編程基礎、MapRece編程進階、MapRec階段作業與實戰訓練
第十階段:Yarn課程體系
Yarn原理介紹:框架組件流程調度
第十一階段:Hbase課程體系
Yarn原理介紹:框架組件流程調度、HBase入門:模型坐標結構訪問場景、HBase深入剖析:合並分裂數據定位、Hbase訪問Shell介面、Hbase訪問API介面、HbaseRowkey設計、Hbase實戰訓練
第十二階段:MongoDB課程體系
MongoDB精講:原理概念模型場景、MongoDB精講:安全與用戶管理、MongoDB實戰訓練、MongoDB階段作業與實戰訓練
第十三階段:Redis課程體系
Redis快速入門、Redis配置解析、Redis持久化RDB與AOF、Redis操作解析、Redis分頁與排序、Redis階段作業與實戰訓練
第十四階段:Scala課程體系
Scala入門:介紹環境搭建第1個Scala程序、Scala流程式控制制、異常處理、Scala數據類型、運算符、Scala函數基礎、Scala常規函數、Scala集合類、Scala類、Scala對象、Scala特徵、Scala模式匹配、Scala階段作業與實戰訓練
第十五階段:Kafka課程體系
Kafka初窺門徑:主題分區讀寫原理分布式、Kafka生產&消費API、Kafka階段作業與實戰訓練
第十六階段:Spark課程體系
Spark快速入門、Spark編程模型、Spark深入剖析、Spark深入剖析、SparkSQL簡介、SparkSQL程序開發光速入門、SparkSQL程序開發數據源、SparkSQL程序開DataFrame、SparkSQL程序開發DataSet、SparkSQL程序開發數據類型、SparkStreaming入門、SparkStreaming程序開發如何開始、SparkStreaming程序開發DStream的輸入源、SparkStreaming程序開發Dstream的操作、SparkStreaming程序開發程序開發--性能優化、SparkStreaming程序開發容錯容災、SparkMllib 解析與實戰、SparkGraphX 解析與實戰
第十七階段:Hive課程提體系
體系結構機制場景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive階段作業與實戰訓練
第十八階段:企業級項目實戰
1、基於美團網的大型離線電商數據分析平台
2、移動基站信號監測大數據
3、大規模設備運維大數據分析挖掘平台
4、基 於互聯網海量數據的輿情大數據平台項目
以上大數據部分共計學習656課時,合計82天!
0基礎大數據培訓課程共計學習130天。
以上是大數據開發培訓內容,加米穀是線下面授小班教學!

❺ 有什麼關於 Spark 的書推薦

《大數據Spark企業級實戰》本書共包括14章,每章的主要內容如下。


第一章回答了為什麼大型數據處理平台都要選擇

。為什麼spark如此之快?星火的理論基礎是什麼?spark如何使用專門的技術堆棧來解決大規模數據處理的需要?

第二章回答了如何從頭構建Hadoop集群的問題。

如何構建基於Hadoop集群的星火集群?如何測試火星的質量?


附錄從spark的角度解釋了Scala,並詳細解釋了Scala函數編程和面向對象編程。

❻ 王家林講的Spark視頻 我想說 太坑爹了吧!!!!!

是啊,我之前買了他的
大數據spark企業及實戰
裡面貼了好多代碼,一連十好幾頁都是,而且很多截屏,黑乎乎的。。。90多塊啊。。。

❼ 如何從菜鳥成長成spark大數據高手

第一階段:熟練掌握Scala語言
1,spark框架是採用scala語言寫的,精緻優雅。想要成為spark高手,你就必須閱讀spark源碼,就必須掌握scala。
2,雖然現在的spark可以使用多種語言開發,java,python,但是最快速和支持最好的API依然並將永遠是Scala的API,所以必須掌握scala來編寫復雜的和高性能的spark分布式程序。
3尤其是熟練掌握Scala的trait,apply,函數式編程,泛型,逆變,與協變等。

第二階段:精通spark平台本身提供給開發折的API
1,掌握spark中面向RDD的開發模式,掌握各種transformation和action函數的使用。
2,掌握Spark中的款依賴和窄依賴,lineage機制。
3,掌握RDD的計算流程,如Stage的劃分,spark應用程序提交給集群的基礎過程和Work節點基礎的工作原理。

第三階段:深入Spark內核
此階段主要是通過Spark框架的源碼研讀來深入Spark內核部分:
1,通過源碼掌握Spark的任務提交,
2,通過源碼掌握Spark的集群的任務調度,
3,尤其要精通DAGScheler,TaskScheler和Worker節點內部的工作的每一步細節。

第四階段:掌握Spark上的核心框架的使用
Spark作為雲計算大數據時代的集大成者,在實時流式處理,圖技術,機器學習,nosql查詢等方面具有明顯的優勢,我們使用Spark的時候大部分時間都是在使用其框架:
sparksql,spark streaming等
1,spark streaming是出色的實時流失處理框架,要掌握,DStream,transformation和checkpoint等。
2,spark sql是離線統計分析工具,shark已經沒落。
3,對於spark中的機器學習和Graphx等要掌握其原理和用法。

第五階段:做商業級的spark項目
通過一個完整的具有代表性的spark項目來貫穿spark的方方面面,包括項目的框架設計,用到的技術的剖析,開始實現,運維等,完善掌握其中的每一個階段和細節,以後你就可以從容的面對絕大多數spark項目。

第六階段:提供spark解決方案
1,徹底掌握spark框架源碼的每一個細節,
2,根據步同的業務場景的需要提供spark在不同場景的解決方案,
3,根據實際需要,在spark框架基礎上經行2次開發,打造自己的spark框架。

❽ 國內大數據培訓的領頭羊是

DT大數據夢工廠
動講解大數據的各個技術點,6個月內從零起步實戰成為Spark高級(資深)工程師,輕松月薪30K+,全部內容掌握可達年薪50萬,掌握課程的全部內容後絕對可以勝任國內外任何一家大數據公司Spark高級工程師要求,談笑間進入網路、阿里、騰訊、IBM、Intel、Twitter、華為、京東、攜程、網易等公司並成為這些公司的大數據實戰技術骨幹!以實戰為導向,每節課均是純動手實戰,基於大量案例實戰,深度剖析和講解Spark及Hadoop。課程會涵蓋Linux零基礎實戰、Java零基礎實戰、Hadoop零基礎實戰,Hive實戰、Scala編程詳解、Spark核心編程、Spark SQL企業級實戰,Kafka企業級實戰、Spark Streaming企業級實戰、GraphX企業級實戰以及源碼剖析、性能調優、企業級案例實戰等內容;可以快速掌握實戰技巧及招式

❾ 大數據都需要學什麼

首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。

大數據

Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。


Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。


Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。


Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。


Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。


Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。


Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。


Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。


Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。


Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。


Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。