python大數據必備知識
⑴ 學習大數據需要哪些基本知識
1、思維模式轉變的催化劑是大量新技術的誕生,它們能夠處理大數據分析所帶來的3個V的挑戰。紮根於開源社區,Hadoop已經是目前大數據平台中應用率最高的技術,特別是針對諸如文本、社交媒體訂閱以及視頻等非結構化數據。
2、除分布式文件系統之外,伴隨Hadoop一同出現的還有進行大數據集處理MapRece架構。根據權威報告顯示,許多企業都開始使用或者評估Hadoop技術來作為其大數據平台的標准。
3、我們生活的時代,相對穩定的資料庫市場中還在出現一些新的技術,而且在未來幾年,它們會發揮作用。事實上,NoSQL資料庫在一個廣義上派系基礎上,其本身就包含了幾種技術。
4、總體而言,他們關注關系型資料庫引擎的限制,如索引、流媒體和高訪問量的網站服務。在這些領域,相較關系型資料庫引擎,NoSQL的效率明顯更高。
5、在Gartner公司評選的2012年十大戰略技術中,內存分析在個人消費電子設備以及其他嵌入式設備中的應用將會得到快速的發展。隨著越來越多的價格低廉的內存用到數據中心中,如何利用這一優勢對軟體進行最大限度的優化成為關鍵的問題。
6、內存分析以其實時、高性能的特性,成為大數據分析時代下的「新寵兒」。如何讓大數據轉化為最佳的洞察力,也許內存分析就是答案。大數據背景下,用戶以及IT提供商應該將其視為長遠發展的技術趨勢。
⑵ python做大數據,都需要學習什麼,比如哪些框架,庫等!人工智慧呢請盡量詳細點!
階段一、人工智慧篇之Python核心
1、Python掃盲
2、面向對象編程基礎
3、變數和基本數據類型
4、Python機器學習類庫
5、Python控制語句與函數
6.、Python資料庫操作+正則表達式
7、Lambda表達式、裝飾器和Python模塊化開發
階段二、人工智慧篇之資料庫交互技術
1、初識MySQL資料庫
2、創建MySQL資料庫和表
3、MySQL資料庫數據管理
4、使用事務保證數據完整性
5、使用DQL命令查詢數據
6、創建和使用索引
7、MySQL資料庫備份和恢復
階段三、人工智慧篇之前端特效
1、HTML+CSS
2、java
3、jQuery
階段四、人工智慧篇之Python高級應用
1、Python開發
2、資料庫應用程序開發
3、Python Web設計
4、存儲模型設計
5、智聯招聘爬蟲
6、附加:基礎python爬蟲庫
階段五、人工智慧篇之人工智慧機器學習篇
1、數學基礎
2、高等數學必知必會
3、Numpy前導介紹
4、Pandas前導課程
5、機器學習
階段六、人工智慧篇之人工智慧項目實戰
1、人臉性別和年齡識別原理
2、CTR廣告點擊量預測
3、DQN+遺傳演算法
4、圖像檢索系統
5、NLP閱讀理解
階段七、人工智慧篇之人工智慧項目實戰篇
1、基於Python數據分析與機器學習案例實戰教程
2、基於人工智慧與深度學習的項目實戰
3、分布式搜索引擎ElasticSearch開發
4、AI法律咨詢大數據分析與服務智能推薦項目
5、電商大數據情感分析與AI推斷實戰項目
6、AI大數據互聯網電影智能推薦
⑶ 如何用python進行大數據挖掘和分析
毫不誇張地說,大數據已經成為任何商業交流中不可或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!
⑷ 學習大數據需要哪些基本知識
1.了解大數據理論
要學習大數據你至少應該知道什麼是大數據,大數據一般運用在什麼領域。對大數據有一個大概的了解,你才能清楚自己對大數據究竟是否有興趣,如果對大數據一無所知就開始學習,有可能學著學著發現自己其實不喜歡,這樣浪費了時間精力,可能還浪費了金錢。所以如果想要學習大數據,需要先對大數據有一個大概的了解。
2.計算機編程語言的學習。
對於零基礎的朋友,一開始入門可能不會太簡單。因為需要掌握一門計算機的編程語言,大家都知道計算機編程語言有很多,比如:R,C++,JAVA等等。目前大多數機構都是教JAVA,我們都知道Java是目前使用最為廣泛的網路編程語言之一。他容易學而且很好用,如果你學習過C++語言,你會覺得C++和Java很像,因為Java中許多基本語句的語法和C++一樣,像常用的循環語句,控制語句等和C++幾乎一樣,其實Java和C++是兩種完全不同的語言,Java只需理解一些基本的概念,就可以用它編寫出適合於各種情況的應用程序。Java略去了
運算符重載、多重繼承等模糊的概念,C++中許多容易混淆的概念,有的被Java棄之不用了,或者以一種更清楚更容易理解的方式實現,因此Java語言相對是簡單的。
在學習Java的時候,我們一般需要學習這些課程: HTML&CSS&JS,java的基礎,JDBC與資料庫,JSP java web技術, jQuery與AJAX技術,SpringMVC、Mybatis、Hibernate等等。這些課程都能幫助我們更好了解Java,學會運用Java。
3.大數據相關課程的學習。
學完了編程語言之後,一般就可以進行大數據部分的課程學習了。一般來說,學習大數據部分的時間比學習Java的時間要短。大數據課程,包括大數據技術入門,海量數據高級分析語言,海量數據存儲分布式存儲,以及海量數據分析分布式計算等部分,Linux,Hadoop,Scala, HBase, Hive, Spark等等專業課程。如果要完整的學習大數據的話,這些課程都是必不可少的。
⑸ 如何使用Python分析大數據
#coding:utf-8
#file: FileSplit.py
import os,os.path,time
def FileSplit(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
number = 100000 #每個小文件中保存100000條數據
dataLine = sFile.readline()
tempData = [] #緩存列表
fileNum = 1
if not os.path.isdir(targetFolder): #如果目標目錄不存在,則創建
os.mkdir(targetFolder)
while dataLine: #有數據
for row in range(number):
tempData.append(dataLine) #將一行數據添加到列表中
dataLine = sFile.readline()
if not dataLine :
break
tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + str(fileNum) + ".txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tempData) #將列表保存到文件中
tFile.close()
tempData = [] #清空緩存列表
print(tFilename + " 創建於: " + str(time.ctime()))
fileNum += 1 #文件編號
sFile.close()
if __name__ == "__main__" :
FileSplit("access.log","access")
====
#coding:utf-8
#file: Map.py
import os,os.path,re
def Map(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
dataLine = sFile.readline()
tempData = {} #緩存列表
if not os.path.isdir(targetFolder): #如果目標目錄不存在,則創建
os.mkdir(targetFolder)
while dataLine: #有數據
p_re = re.compile(r'(GET|POST)\s(.*?)\sHTTP/1.[01]',re.IGNORECASE) #用正則表達式解析數據
match = p_re.findall(dataLine)
if match:
visitUrl = match[0][1]
if visitUrl in tempData:
tempData[visitUrl] += 1
else:
tempData[visitUrl] = 1
dataLine = sFile.readline() #讀入下一行數據
sFile.close()
tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')
tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + "_map.txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tList) #將列表保存到文件中
tFile.close()
if __name__ == "__main__" :
Map("access\\access.log1.txt","access")
Map("access\\access.log2.txt","access")
Map("access\\access.log3.txt","access")
==
#coding:utf-8
#file: Rece.py
import os,os.path,re
def Rece(sourceFolder, targetFile):
tempData = {} #緩存列表
p_re = re.compile(r'(.*?)(\d{1,}$)',re.IGNORECASE) #用正則表達式解析數據
for root,dirs,files in os.walk(sourceFolder):
for fil in files:
if fil.endswith('_map.txt'): #是rece文件
sFile = open(os.path.abspath(os.path.join(root,fil)), 'r')
dataLine = sFile.readline()
while dataLine: #有數據
subdata = p_re.findall(dataLine) #用空格分割數據
#print(subdata[0][0]," ",subdata[0][1])
if subdata[0][0] in tempData:
tempData[subdata[0][0]] += int(subdata[0][1])
else:
tempData[subdata[0][0]] = int(subdata[0][1])
dataLine = sFile.readline() #讀入下一行數據
sFile.close()
tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')
tFilename = os.path.join(sourceFolder,targetFile + "_rece.txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tList) #將列表保存到文件中
tFile.close()
if __name__ == "__main__" :
Rece("access","access")
⑹ python大數據需要學什麼
1、需求---->演算法
演算法-->獨自存在 解決問題的思想
特性:
輸入性
輸出性
有窮性
確定性
可行性
2、基本運算總數 ---->效率
3、問題規模N
T(N) ---N (數學概念:漸進函數)
時間復雜度---"O"
最優時間復雜度
最壞時間復雜度(重點)
平均時間復雜度
4、時間復雜度計算規則
1、常數項 操作 ---O(1)
2、順序結構 累和
3、循環結構 累積
4、分支結構 取時間復雜度最高
5、最壞時間復雜度(未說明)
6、只取最高次項 其他忽略
5、空間復雜度---了解就行
6、時間復雜度消耗時間的排序
O(1) < O(logn) < O(n) <O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
7、對Python中list操作分析---->各個操作效率不同(時間復雜度不同)
工具模塊 :timeit
創建對象:timeit.Timer()
參數:
1、測試代碼段
2、導入語法
3、計時器(平台相關)
返回值:
time對象
調用方法:time.timeit()
參數:
1、設置測試次數
返回值:
時間(秒數 float類型)
8、list dict操作時間復雜度剖析
9、數據結構
概念:數據元素之間的關系
數據結構是演算法的載體
共同構成一個程序
抽象數據類型(ADT)
插入 刪除 修改 查找 排序
10、順序表---屬於線性表
連續內存,存儲形式
1、直接存儲數據(數據類型相同)
2、元素外置(存儲元素的對應地址)
千鋒Python的課程推薦你去試聽一下
⑺ python 大數據需要學哪些
階段一:Python開發基礎
Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。
階段二:Python高級編程和資料庫開發
Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。
階段三:前端開發
Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。
階段四:WEB框架開發
Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。
階段五:爬蟲開發
Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。
階段六:全棧項目實戰
Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:演算法&設計模式
階段八:數據分析
Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。
階段九:機器學習、圖像識別、NLP自然語言處理
Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、圖形識別、人工智慧玩具開發等。
階段十:Linux系統&百萬級並發架構解決方案
階段十一:高並發語言GO開發
Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。
⑻ 如何用Python分析大數據
基本主流的大數據框架和演算法庫都支持python,比如hadoop 和spark,需要你根據操作的狂降找到對應的python 庫