大數據四大特徵

說起大數據,估計大家都覺得只聽過概念,但是具體是什麼東西,怎麼定義,沒有一個標準的東西

《大數據時代》提到了大數據的4個特徵:

1.大量

大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。只有數據體量達到了PB級別以上,才能被稱為大數據。1PB等於1024TB,1TB等於1024G,那麼1PB等於1024*1024個G的數據。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。

2.高速

就是通過演算法對數據的邏輯處理速度非常快,1秒定律,可從各種類型的數據中快速獲得高價值的信息,這一點也是和傳統的數據挖掘技術有著本質的不同。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。


3.多樣

如果只有單一的數據,那麼這些數據就沒有了價值,比如只有單一的個人數據,或者單一的用戶提交數據,這些數據還不能稱為大數據。廣泛的數據來源,決定了大數據形式的多樣性。比如當前的上網用戶中,年齡,學歷,愛好,性格等等每個人的特徵都不一樣,這個也就是大數據的多樣性,當然了如果擴展到全國,那麼數據的多樣性會更強,每個地區,每個時間段,都會存在各種各樣的數據多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。

4.價值

這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識。你如果有1PB以上的全國所有20-35年輕人的上網數據的時候,那麼它自然就有了商業價值,比如通過分析這些數據,我們就知道這些人的愛好,進而指導產品的發展方向等等。如果有了全國幾百萬病人的數據,根據這些數據進行分析就能預測疾病的發生,這些都是大數據的價值。大數據運用之廣泛,如運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。

大數據已經成為過去幾年中大部分行業的游戲規則,行業領袖,學者和其他知名的利益相關者都同意這一點,隨著大數據繼續滲透到我們的日常生活中,圍繞大數據的炒作正在轉向實際使用中的真正價值。

所以現在加入大數據的行列,前景是很不錯的,找一個專業的機構去學習也是可以

Ⅱ 以下哪些屬於大數據特徵

大數據(big
data),是指來無法在可承受的自時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。它的4個基本特徵分別為:
1.
數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。
2.
要求快速響應,市場變化快,要求能及時快速的響應變化,那對數據的分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。
3.
數據多樣性:不同的數據源,非結構化數據越來越多,需要進行清洗,整理,篩選等操作,變為結構數據。
4.
價值密度低,由於數據採集的不及時,數據樣本不全面,數據可能不連續等等,數據可能會失真,但當數據量達到一定規模,可以通過更多的數據達到更真實全面的反饋。

Ⅲ 大數據的特點包括哪些

1、容量():

數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):

數據類型的多樣性。

3、速度(Velocity):

指獲得數據的速度。

4、可變性(Variability):

妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):

數據的質量。

6、復雜性(Complexity):

數據量巨大,來源多渠道。

7、價值(value):

合理運用大數據,以低成本創造高價值。

大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(3)大數據特徵不包括擴展閱讀:

一、結構

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

二、意義

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。

有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。

與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。

大數據的價值體現在以下幾個方面:

1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷

2) 做小而美模式的中小微企業可以利用大數據做服務轉型

3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值

Ⅳ 大數據的特徵是什麼

1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;

2、種類(Variety):數據類型的多樣性;

3、速度(Velocity):指獲得數據的速度;

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。

(4)大數據特徵不包括擴展閱讀:

大數據的精髓:

大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。

A、不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);

B、不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;

之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;

C、不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。

Ⅳ 大數據的特點主要有什麼

大數據的主要特點有:

准確(Veracity)

這是一個在討論大數據時時常被忽略的一個屬性,部分原因是這個屬性相對來說比較新,盡管它與其他的屬性同樣重要。這是一個與數據是否可靠相關的屬性,也就是那些在數據科學流程中會被用於決策的數據(而這不同於與傳統的數據分析流程),精確性與信噪比(signal-to-noise ratio)有關。

例如,在大數據中發現哪些數據對商業是真正有效的,這在信息理論中是個十分重要的概念。由於並不是所有的數據源都具有相等的可靠性,在這個過程中,大數據的精確性會趨於變化,如何增加可用數據的精確性是大數據的主要挑戰。

高速(Velocity)

大數據是在運動著的,通常處於很高的傳輸速度之下。它經常被認為是數據流,而數據流通常是很難被歸檔的(考慮到有限的網路存儲空間,單單是高速就已經是一個巨大的問題)。這就是為什麼只能收集到數據其中的某些部分。如果我們有能力收集數據的全部,長時間存儲大量數據也會顯得非常昂貴,所以周期性的收集數據遺棄一部分數據以節省空間,僅保留數據摘要(如平均值和方差)。 這個問題在未來會顯得更為嚴重,因為越來越多的數據正以越來越快的速度所產生。

體量(Volume)

大數據由大量數據組成,從幾個TB到幾個ZB。這些數據可能會分布在許多地方,通常是在一些連入網際網路的計算網路中。

一般來說,凡是滿足大數據的幾個V的條件的數據都會因為太大而無法被單獨的計算機處理。單單這一個問題就需要一種不同的數據處理思路,這也使得並行計算技術(例如MapRece)得以迅速崛起。

多樣(Variety)

在過去,數據或多或少是同構的,這種特點也使得它更易於管理。這種情況並不出現在大數據中,由於數據的來源各異,因此形式各異。這體現為各種不同的數據結構類型,半結構化以及完全非結構化的數據類型。

Ⅵ 大數據的特徵包括哪些

大數據的特徵包括你的購物習慣、經常去的地方、每天的出行路線、以及消費習慣等等全方位的資訊和給你的定製服務。

Ⅶ 大數據的特點主要包括哪些

1.數據量大 大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。 2.類型繁多 包括網路日誌、音頻、視頻、圖片、地理位置信息等等

Ⅷ 大數據具有哪些特徵.答案

大數據的5V特點(IBM提出):Volume(大量)、(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(8)大數據特徵不包括擴展閱讀:

一、具體特徵

容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

種類(Variety):數據類型的多樣性。

速度(Velocity):指獲得數據的速度。

可變性(Variability):妨礙了處理和有效地管理數據的過程。

真實性(Veracity):數據的質量。

復雜性(Complexity):數據量巨大,來源多渠道。

價值(value):合理運用大數據,以低成本創造高價值。

二、運用

洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

麻省理工學院利用手機定位數據和交通數據建立城市規劃。

梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

Ⅸ 以下哪些是大數據的基本特徵

容量、種類、速度、可變性、真實性、復雜性、價值。