大數據架構究竟用哪種框架更為合適

大數據數量龐大,格式多樣化。大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。

一、大數據建設思路

1)數據的獲得

通過大數據的引入和部署,可以達到如下效果:

1)數據整合

·統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;

·統一數據標准:統一建立標準的數據編碼目錄,實現企業數據的標准化與統一存儲;

·統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。

2)數據質量管控

·數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和准確性的校驗,保證數據的一致性、完整性和准確性;

·數據質量管控:通過建立企業數據的質量標准、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。

3)數據共享

·消除網狀介面,建立大數據共享中心,為各業務系統提供共享數據,降低介面復雜度,提高系統間介面效率與質量;

·以實時或准實時的方式將整合或計算好的數據向外系統提供。

4)數據應用

·查詢應用:平台實現條件不固定、不可預見、格式靈活的按需查詢功能;

·固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;

·動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。

四、總結

基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。

❷ 大數據技術架構都有哪些變化

1.從本地數據平台到基於雲的數據平台


雲可能是一種全新的數據架構方法的具顛覆性的推動力,因為它為公司提供了一種快速擴展人工智慧工具和功能以獲取競爭優勢的方法。


2.從批處理到實時數據處理


實時數據通信和流媒體功能的成本已大大降低,這為其主流使用鋪平了道路。這些技術實現了一系列新的業務應用:例如,運輸公司可以在計程車到達時向客戶提供精確到秒的抵達時間預測;保險公司可以分析來自智能設備的實時行為數據,從而將費率客制化;而且製造商可以根據實時的感測器數據來預測基礎設施方面的各種問題。


3.從預集成的商業解決方案到模塊化的同類佳平台


為了擴展應用程序的規模,公司往往需要沖破大型解決方案供應商所提供的遺留數據生態系統的限制。現在,許多公司正朝著高度模塊化的數據架構發展,這種架構使用了佳的,經常使用的開源組件,這些組件可以根據需要被新技術替換而不會影響數據架構的其他部分。


4.從點對點到脫離數據訪問


人們可以通過API來揭露數據,這樣可以確保直接查看和修改數據的做法是受限且安全的,同時還可以讓人們更快地訪問常見的數據集。這使得數據可以在團隊之間輕松得到重用(reused),從而加速訪問並實現分析團隊之間的無縫協作,從而可以更高效地開發各種人工智慧用例。


關於大數據技術架構都有哪些變化,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

❸ 什麼樣的基礎設施適合快速和大數據架構

為大數據和較新的快速數據架構提供基礎設施並不是一個餅干切割的問題。兩者對硬體和軟體基礎設施都有著顯著的調整或改變。
較新的快速的數據架構與大數據架構有著顯著區別,並且快速數據提供了真正的聯機事務處理工具。理解大數據和快速數據需求的變化能夠幫助你做出正確的硬體和軟體選擇。
大數據架構
相比企業在以往通常收集數據的方法,大數據是通過更大的數據容量,分析和獲得更大的洞見的過程,大部分的數據(例如,社會媒體有關客戶的數據)是可訪問的公共雲。這一數據,反過來,強調快速訪問,不再強調一致性,也造就了如Hadoop這樣一系列的大數據工具。因此,架構中的如下變化和重點是普遍的:
支持內部軟體,如Hadoop和Hive,以及橫向擴展的雲功能硬體,用於社交媒體或其他大數據輸入起作用的場景。
支持現有的數據架構的虛擬化和私有雲軟體。
支持大規模、深度和ad hoc分析軟體,且允許數據科學家為企業定製需求的軟體工具。
大規模擴展的存儲容量,特別是近實時分析。
快速數據架構
快速數據是可以在近乎實時的情況下處理流感測器和物聯網數據的架構。該種架構更聚焦於快速更新,會經常性地放開讀取數據的限制,直到有數據被寫入磁碟才會鎖定。無論是通過現有的、典型的柱狀圖、資料庫或從專門設計的Hadoop相關工具,採用這種架構工作的企業通常適需要對數據進行一些初始的流分析。在這一新生領域中,架構和重點的變化是很常見的:
用於快速更新和初始流數據分析的資料庫軟體。
大幅度提高快速數據存儲的非易失性RAM和固態硬碟的使用(例如,1TB的主內存和1PB的SSD);
及時的軟體約束,類似於那些舊版實時操作系統。
快速數據架構與大數據架構的融合
快速數據的目的是與大數據架構融合起來。因此,為了將這兩種方式融合起來:
數據在快速響應的快速數據和減少限制的大數據存儲之間是分離的。
該種融合架構允許使用大數據資料庫和分析工具訪問快速數據架構存儲的數據。
這是一個非常簡要的概述,典型的實現和有一系列的選擇。主要的供應商銷售各種各樣的軟體和硬體,以涵蓋所有的大數據架構和絕大部分的快速數據架構,而開源供應商涵蓋大部分相同的軟體領域。因此,快速數據和大數據的實施往往是在成本與速度之間進行的平衡。聰明的買家能夠通過增加有效的架構來獲得競爭優勢。
在快速數據領域的小型供應商Redis Labs和GridGain,大型供應商Oracle和SAP都在快速數據以及大數據兩方面發揮了重要的作用。SAP可能是快速數據工具領域更加合適的供應商。在硬體領域,英特爾對快速數據有濃厚興趣。其他傳統的大數據廠商,如IBM和戴爾在收購EMC的過程中,還沒有來得及發表就表現得很興奮。在IBM和戴爾兩者中間,EMC賺足了面子和里子,因此未來它在快速數據架構方面可能比IBM更有針對性。

❹ 大數據工程師使用的大數據技術架構發生了哪些變化

【導讀】作為大數據工程師,進行數據分析的時候,不可能是採用人工進行的,而是需要藉助一定的工具進行,那就是大數據技術工具。近年來,大數據分析技術興起,而將大數據分析技術運用到企業品牌的營銷上卻並沒有實行太久,大數據技術對各個行業的發展都產生了很大的影響,那麼大數據工程師使用的大數據技術架構發生了哪些變化呢?一起來了解一下吧。

1、從本地數據平台到基於雲的數據平台

雲可能是一種全新的數據架構方法的具顛覆性的推動力,因為它為公司提供了一種快速擴展人工智慧工具和功能以獲取競爭優勢的方法。

2、從批處理到實時數據處理

實時數據通信和流媒體功能的成本已大大降低,這為其主流使用鋪平了道路。這些技術實現了一系列新的業務應用:例如,運輸公司可以在計程車到達時向客戶提供精確到秒的抵達時間預測;保險公司可以分析來自智能設備的實時行為數據,從而將費率客制化;而且製造商可以根據實時的感測器數據來預測基礎設施方面的各種問題。

3、從預集成的商業解決方案到模塊化的同類佳平台

為了擴展應用程序的規模,公司往往需要沖破大型解決方案供應商所提供的遺留數據生態系統的限制。現在,許多公司正朝著高度模塊化的數據架構發展,這種架構使用了佳的,經常使用的開源組件,這些組件可以根據需要被新技術替換而不會影響數據架構的其他部分。

4、從點對點到脫離數據訪問

人們可以通過API來揭露數據,這樣可以確保直接查看和修改數據的做法是受限且安全的,同時還可以讓人們更快地訪問常見的數據集。這使得數據可以在團隊之間輕松得到重用(reused),從而加速訪問並實現分析團隊之間的無縫協作,從而可以更高效地開發各種人工智慧用例。

以上就是大數據技術架構變化詳情,就給大家分析到這里了,希望對大家能有所幫助,作為一名大數據工程師,還是希望大家學習一些多元化的大數據技術,幫助企業更好的進行企業決策等等。

❺ 大數據系統架構包含內容涉及哪些

【導語】大數據的應用開發過於偏向底層,具有學習難度大,涉及技術面廣的問題,這制約了大數據的普及。大數據架構是大數據技術應用的一個非常常見的形式,那麼大數據系統架構包含內容涉及哪些?下面我們就來具體了解一下。

1、數據源

所有大數據架構都從源代碼開始。這可以包含來源於資料庫的數據、來自實時源(如物聯網設備)的數據,及其從應用程序(如Windows日誌)生成的靜態文件。

2、實時消息接收

假如有實時源,則需要在架構中構建一種機制來攝入數據。

3、數據存儲

公司需要存儲將通過大數據架構處理的數據。一般而言,數據將存儲在數據湖中,這是一個可以輕松擴展的大型非結構化資料庫。

4、批處理和實時處理的組合

公司需要同時處理實時數據和靜態數據,因而應在大數據架構中內置批量和實時處理的組合。這是由於能夠應用批處理有效地處理大批量數據,而實時數據需要立刻處理才能夠帶來價值。批處理涉及到長期運轉的作業,用於篩選、聚合和准備數據開展分析。

5、分析數據存儲

准備好要分析的數據後,需要將它們放到一個位置,便於對整個數據集開展分析。分析數據儲存的必要性在於,公司的全部數據都聚集在一個位置,因而其分析將是全面的,而且針對分析而非事務進行了優化。這可能採用基於雲計算的數據倉庫或關系資料庫的形式,具體取決於公司的需求。

6、分析或報告工具

在攝入和處理各類數據源之後,公司需要包含一個分析數據的工具。一般而言,公司將使用BI(商業智能)工具來完成這項工作,而且或者需要數據科學家來探索數據。

關於大數據系統架構包含內容涉及哪些,就給大家分享到這里了,希望對大家能有所幫助,作為新時代大學生,我們只有不算提升自我技能,充實自我,才是最為正確的選擇。

❻ 「大數據架構」用哪種框架更為合適

個完整的大數據平台應該提供離線計算、即席查詢、實時計算、實時查詢這幾個方面的功能。
hadoop、spark、storm 無論哪一個,單獨不可能完成上面的所有功能。

hadoop+spark+hive是一個很不錯的選擇.hadoop的HDFS毋庸置疑是分布式文件系統的解決方案,解決存儲問題;hadoop maprece、hive、spark application、sparkSQL解決的是離線計算和即席查詢的問題;spark streaming解決的是實時計算問題;另外,還需要HBase或者Redis等NOSQL技術來解決實時查詢的問題。

除了這些,大數據平台中必不可少的需要任務調度系統和數據交換工具;
任務調度系統解決所有大數據平台中的任務調度與監控;數據交換工具解決其他數據源與HDFS之間的數據傳輸,比如:資料庫到HDFS、HDFS到資料庫等等。關於大數據平台的架構技術文章,可搜索"lxw的大數據田地",裡面有很多。

❼ 什麼是大數據架構系統

大數據的應抄用開發過於偏向底襲層,具有學習難度大,涉及技術面廣的問題,這制約了大數據的普及。現在需要一種技術,把大數據開發中一些通用的,重復使用的基礎代碼、演算法封裝為類庫,降低大數據的學習門檻,降低開發難度,提高大數據項目的開發效率。
大數據在工作中的應用有三種:與業務相關,比如用戶畫像、風險控制等;
與決策相關,數據科學的領域,了解統計學、演算法,這是數據科學家的范疇;與工程相關,如何實施、如何實現、解決什麼業務問題,這是數據工程師的工作。
數據源的特點決定數據採集與數據存儲的技術選型,我根據數據源的特點將其分為四大類:
第一類:從來源來看分為內部數據和外部數據;

第二類:從結構來看分為非結構化數據和結構化數據;
第三類:從可變性來看分為不可變可添加數據和可修改刪除數據;
第四類,從規模來看分為大量數據和小量數據。
大數據平台第一個要素就是數據源,我們要處理的數據源往往是在業務系統上,數據分析的時候可能不會直接對業務的數據源進行處理,而是先經過數據採集、數據存儲,之後才是數據分析和數據處理。

❽ 大數據平台架構有哪些

一、事務使用:其實指的是數據收集,你經過什麼樣的方法收集到數據。互聯網收集數據相對簡略,經過網頁、App就能夠收集到數據,比方許多銀行現在都有自己的App。

更深層次的還能收集到用戶的行為數據,能夠切分出來許多維度,做很細的剖析。但是對於涉及到線下的行業,數據收集就需要藉助各類的事務體系去完成。

二、數據集成:指的其實是ETL,指的是用戶從數據源抽取出所需的數據,經過數據清洗,終究依照預先定義好的數據倉庫模型,將數據載入到數據倉庫中去。而這兒的Kettle僅僅ETL的其中一種。

三、數據存儲:指的便是數據倉庫的建設了,簡略來說能夠分為事務數據層(DW)、指標層、維度層、匯總層(DWA)。

四、數據同享層:表明在數據倉庫與事務體系間提供數據同享服務。Web Service和Web API,代表的是一種數據間的銜接方法,還有一些其他銜接方法,能夠依照自己的情況來確定。

五、數據剖析層:剖析函數就相對比較容易理解了,便是各種數學函數,比方K均值剖析、聚類、RMF模型等等。

六、數據展現:結果以什麼樣的方式呈現,其實便是數據可視化。這兒建議用敏捷BI,和傳統BI不同的是,它能經過簡略的拖拽就生成報表,學習成本較低。

七、數據訪問:這個就比較簡略了,看你是經過什麼樣的方法去查看這些數據,圖中示例的是因為B/S架構,終究的可視化結果是經過瀏覽器訪問的。

關於大數據平台架構有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

❾ 大數據平台架構如何進行 包括哪些方面

【導語】大數據平台將互聯網使用和大數據產品整合起來,將實時數據和離線數據打通,使數據能夠實現更大規模的相關核算,挖掘出數據更大的價值,然後實現數據驅動事務,那麼大數據平台架構如何進行?包括哪些方面呢?

1、事務使用:

其實指的是數據收集,你經過什麼樣的方法收集到數據。互聯網收集數據相對簡略,經過網頁、App就能夠收集到數據,比方許多銀行現在都有自己的App。

更深層次的還能收集到用戶的行為數據,能夠切分出來許多維度,做很細的剖析。但是對於涉及到線下的行業,數據收集就需要藉助各類的事務體系去完成。

2、數據集成:

指的其實是ETL,指的是用戶從數據源抽取出所需的數據,經過數據清洗,終究依照預先定義好的數據倉庫模型,將數據載入到數據倉庫中去。而這兒的Kettle僅僅ETL的其中一種。

3、數據存儲:

指的便是數據倉庫的建設了,簡略來說能夠分為事務數據層(DW)、指標層、維度層、匯總層(DWA)。

4、數據同享層:

表明在數據倉庫與事務體系間提供數據同享服務。Web Service和Web
API,代表的是一種數據間的銜接方法,還有一些其他銜接方法,能夠依照自己的情況來確定。

5、數據剖析層:

剖析函數就相對比較容易理解了,便是各種數學函數,比方K均值剖析、聚類、RMF模型等等。

6、數據展現:

結果以什麼樣的方式呈現,其實便是數據可視化。這兒建議用敏捷BI,和傳統BI不同的是,它能經過簡略的拖拽就生成報表,學習成本較低。

7、數據訪問:

這個就比較簡略了,看你是經過什麼樣的方法去查看這些數據,圖中示例的是因為B/S架構,終究的可視化結果是經過瀏覽器訪問的。

關於大數據平台架構內容,就給大家介紹到這里了,不知道大家是不是有所了解呢,未來,大數據對社會發展的重大影響必將會決定未來的發展趨勢,所以有想法考生要抓緊時間學起來了。

❿ 大數據平台有哪些架構

01

傳統大數據架構

以上的種種架構都圍繞海量數據處理為主,Unifield架構則將機器學習和數據處理揉為一體,在流處理層新增了機器學習層。

優點:

提供了一套數據分析和機器學習結合的架構方案,解決了機器學習如何與數據平台進行結合的問題。

缺點:

實施復雜度更高,對於機器學習架構來說,從軟體包到硬體部署都和數據分析平台有著非常大的差別,因此在實施過程中的難度系數更高。

適用場景:

有著大量數據需要分析,同時對機器學習方便又有著非常大的需求或者有規劃。

大數據時代各種技術日新月異,想要保持競爭力就必須得不斷地學習。寫這些文章的目的是希望能幫到一些人了解學習大數據相關知識 。加米穀大數據,大數據人才培養機構,喜歡的同學可關注下,每天花一點時間學習,長期積累總是會有收獲的。