A. 大數據挖掘方法有哪些

方法1.Analytic Visualizations(可視化分析)


無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。


方法2.Data Mining Algorithms(數據挖掘演算法)


如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。


方法3.Predictive Analytic Capabilities(預測分析能力)


數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。


方法4.semantic engine(語義引擎)


由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從“文檔”中智能地提取信息。


方法5.Data Quality and Master Data Management(數據質量和主數據管理)


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。


關於大數據挖掘方法有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

B. 有哪些大數據分析案例

大數據的特徵就是體量龐大,數據量超級多,因此在允許的條件下,是對大體量的數據進行挖掘,提煉出有價值的東西。廣東韻為大數據分析。

C. 求一些"數據倉庫和數據挖掘"的案例

去數據挖掘相關論壇 諸如www.dmresearch.net之類上去找吧

D. 國內的數據挖掘,大數據的案例有哪些

從去年6月接觸大數據以來,我閱覽了大量關於「大數據」的文章,每天大概是80篇這樣一個量級。其中60%實在反復強調大數據概念,30%在借大數據的風炒作自己,剩下10%,有談技術的,有談硬體存儲的,有談解決方案,真要問有哪些是接地氣並且實實在在大數據解決問題的案例,那是少之又少。

BAT在談大數據,風投資本在談大數據,銀行/金融/保險在談大數據,IBM、微軟、EMC在談大數據,專家教授在談大數據,可是大數據真的讓我們的生活變得更美好了嗎?作為屌絲青年的我們真正感受到大數據的紅利了嗎?不管你信不信,我沒有感受到。也就是說,大數據落地到普通人身的長征,還沒走完。

我們日常生活中使用電腦、平板、手機的數據,被軟硬體伺服器採集加以使用,而我們卻沒有因為貢獻大數據而讓生活更智能,這不符合邏輯。

E. 國內的數據挖掘,大數據應用的案例有哪些

1. 亞馬遜的「信息公司」:果全球哪家公司從大數據發掘出了最大價值,截至目回前,答案可能非答亞馬遜莫屬。亞馬遜也要處理海量數據,這些交易數據的直接價值更大。
作為一家「信息公司」,亞馬遜不僅從每個用戶的購買行為中獲得信息,還將每個用戶在其網站上的所有行為都記錄下來

2. 谷歌的意圖:果說有一家科技公司准確定義了「大數據」概念的話,那一定是谷歌。根據搜索研究公司comScore的數據,僅2012年3月一個月的時間,谷歌處理的搜索詞條數量就高達122億條。谷歌的體量和規模,使它擁有比其他大多數企業更多的應用大數據的途徑。
3.塔吉特的「數據關聯挖掘」:用先進的統計方法,商家可以通過用戶的購買歷史記錄分析來建立模型,預測未來的購買行為,進而設計促銷活動和個性服務避免用戶流失到其他競爭對手那邊。

F. 大數據挖掘常用的方法有哪些

1. Analytic Visualizations(可視化分析)

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

2. Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

3. Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。

4. Semantic Engines(語義引擎)
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。

5. Data Quality and Master Data Management(數據質量和數據管理)

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。