人工智慧在金融領域的應用
㈠ 人工智慧在金融科技領域有哪些應用呢
人工智慧助推了金融科技的發展,自然在金融科技領域的應用比較多比如睿智合創(北京)科技有限公司(簡稱「睿智科技」),就是一家利用人工智慧技術在金融科技領域實現服務與產品廣泛應用的企業。睿智科技的業務以大數據評分為「一個中心」,以科技賦能和智能導流為「兩個基本點」,三大核心板塊圍繞著解決銀行等金融機構的風控和獲客兩大痛點展開,且已經與國內排名前列的大中型銀行開展了緊密合作。
㈡ 人工智慧在金融領域的廣泛應用,會給監管帶來哪些挑戰
人工智慧不僅有助於金融機構提高運營效率、降低風險損失、提升用戶體驗、拓寬銷售渠道,還能夠提升金融服務的普惠程度。然而,不成熟的人工智慧也可能導致系統性風險,影響金融穩定。可見,對金融領域中的人工智慧系統進行監管很有必要,但當前對人工智慧的監管仍面臨多項挑戰。
首先,當人工智慧提供的金融服務出現問題時,責任方難以確定。在人工智慧系統的設計和應用過程中,會涉及多個參與主體,包括運用人工智慧提供服務的金融機構、人工智慧系統的訓練人員和設計公司等。當用戶由於人工智慧提供的服務而遭受損失或者出現其他問題時,目前在法律上尚未對責任方作出規定,也未規定各責任方的責任分擔機制。
其次,人工智慧單獨提供金融服務與現有法律法規相悖。以人工智慧在投資顧問中的應用為例,美國金融業監管局(FINRA)指出,在沒有人為參與的情況下,由人工智慧提供的投資顧問服務不符合顧問受託標准。此外,根據美國相關的法律法規和美國證監會發布的《1940年投資顧問法》,投資顧問被視為受託人,有義務給投資者提供最適宜的建議。但是人工智慧投資顧問無法對投資者賬外資產進行詳盡調查或向投資者咨詢這方面信息,而投資者的賬外資產直接影響其全面的財務狀況,在這種情況下,人工智慧投資顧問提供的個性化投資建議是否最適合投資者就有待商榷。2016年4月1日,馬薩諸塞州證券部也發表政策聲明:由於人工智慧投資顧問存在缺陷,無法進行投資組合分析,這將導致其無法為客戶爭取到最大的利益,即無法履行信託義務,因此人工智慧投資顧問不能作為受託人,無法在馬薩諸塞州登記為投資顧問。
再次,目前對人工智慧系統的信息披露並無統一標准,監管部門需制定人工智慧系統的信息披露標准,同時權衡過度披露和披露不足之間的矛盾。對人工智慧的信息披露有兩方面要求,一方面,需要保護用戶的知情權,需要對人工智慧系統的運行原理、運行情況等信息進行充分披露;另一方面,需要保護人工智慧系統的信息機密,防止不法分子運用披露信息「模仿」該系統,從而給金融機構或者人工智慧企業帶來損失。此外,人工智慧的決策過程是個「黑匣子」,如何讓公眾了解人工智慧的決策過程將會是信息披露的難點。
最後,人工智慧對監管人員提出了新要求。對於人工智慧的監管,需要監管人員對人工智慧的相關知識有所掌握,若是對人工智慧的相關知識不甚了解,就難以理解人工智慧系統的運作方式,更加難以判斷其是否遵守監管要求。此外,監管部門需要對人工智慧的系統演算法進行測評,監管人員只有在熟悉人工智慧相關知識的基礎上,才能完成人工智慧系統的測評過程,並判斷測評方式是否合理。
㈢ 人工智慧在金融投資領域有哪些應用
常見的就是這個了:股市行情預測
許多人都渴望能夠預測股市在任何一天將會做什麼 - 顯而易見的原因。但是機器學習演算法一直在變得越來越近。許多著名的交易公司使用專有系統來預測和執行交易高速和大量。其中很多依靠概率,但即使是交易概率相對較低,以足夠高的速度或速度,也可以為公司帶來巨額利潤。當消費大量數據或者執行交易的速度時,人類不可能競爭得過機器。
常見的人工智慧還可以看這里,人人都應該知道的十大人工智慧和機器學慣用例
㈣ 人工智慧在金融領域,有哪些應用產品
「人工智慧」一詞最初是在1956 年Dartmouth學會上提出的。從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展。人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。
人工智慧是對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。
㈤ 目前人工智慧在金融領域面臨哪些問題
人工智慧是一個工具,一個技術,它要落地還是要跟業務緊密結合在一起。1、需要與業務緊密合作,才能把它落地。2、金融這個領域是非常求穩定、求安全的,對風險的要求非常高。3、人工智慧很多技術是一個黑盒子,很難解釋,但在金融行業,很多時候跟客戶服務的時候,需要有很清晰的解釋。4、金融行業和醫療行業的監管都非常嚴。平安科技作為人工智慧發展的領先企業,在金融行業和醫療行業都有很好的探索和應用。
㈥ 人工智慧在金融領域有哪些應用場景和作用
人工智慧在金融領域是可以發揮多樣性作用,但首先我們要了解人工智慧是什麼?
網路上的解釋是:人工智慧,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或者人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS_MIND))等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。
也就是說利用人本身的智能與分析問題、解決問題,形成一種演算法機制。
在金融中,獲客、風控、身份識別、客服等金融行業中的內容都可以利用人工智慧進行改變,以較容易理解的客服為例,傳統的金融客服都是人工的,而通過人工智慧技術和自然語言處理,可以將客戶問題進行分析,通過演算法給出准確的回復,這就大大節省了金融服務的成本,在這一方面,傳統金融機構並不都具備這樣的技術實力,但是許多大型互聯網公司都結合自身技術優勢對此進行了技術研發,並將研發成果輸出給金融機構,形成了良性循環。
㈦ 人工智慧在金融領域有何前景
據《中國人工智慧行業市場前瞻與投資分析報告》數據顯示,截至到2016年第二季度,全球人工智慧公司突破1000家,跨越13個子門類。2011-2016年人工智慧領域融資額復合增速達到42%,總融資額高達48億美元。
對於上規模的互聯網金融企業來說,防控風險、提升利潤、降低成本才是關鍵,因而不少企業都對金融科技極為重視,科技金融如果能夠接入更多的玩家,那麼對於消費金融公司更容易掌控頭部資源,進而開展相應的業務。
㈧ 大數據和人工智慧在互聯網金融領域有哪些應用
大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。
大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。
數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。
無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。
在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。