❶ 十大,有趣案例 大數據

  1. 啤酒與尿布

  2. 數據新聞讓英國撤軍

  3. 意料之外:胸部最大的是西部妹子

  4. QQ圈子把前女友推薦給未婚妻

  5. 好巧網預知哪個酒店更適合你

  6. 大數據與喬布斯癌症治療

  7. 奧巴馬大選連任成功

  8. 超市預知高中生顧客懷孕

  9. Google成功預測冬季流感

  10. 大數據成功預測奧斯卡21項大獎

❷ 大數據案例

亞馬遜在大數據這塊領域當屬三大巨頭之一,舉個例子吧

亞馬遜在客人購物的時版候,購物頁面總權是充滿了推薦物品,TA為客戶推薦的產品絕不是一個巧合。亞馬遜的推薦引擎完全是基於客戶在過去一段時間的購買行為所做的:客戶的購物車中所收藏的商品、客戶喜歡的商品、其它用戶瀏覽或購買的商品。利用大數據技術對以上數據進行分析,為每位客戶定製了專屬的個人主頁。
因為利用該策略,公司在其第三財政季度期間銷售增長27%,達到了131.8億美元,而去年同期的銷售額則為96億美元。

如果你還需要進一步了解,可以去前瞻產業研究院看看,裡面有挺多資料的

❸ 有哪些大數據分析案例

大數據的特徵就是體量龐大,數據量超級多,因此在允許的條件下,是對大體量的數據進行挖掘,提煉出有價值的東西。廣東韻為大數據分析。

❹ 國內的數據挖掘,大數據的案例有哪些

從去年6月接觸大數據以來,我閱覽了大量關於「大數據」的文章,每天大概是80篇這樣一個量級。其中60%實在反復強調大數據概念,30%在借大數據的風炒作自己,剩下10%,有談技術的,有談硬體存儲的,有談解決方案,真要問有哪些是接地氣並且實實在在大數據解決問題的案例,那是少之又少。

BAT在談大數據,風投資本在談大數據,銀行/金融/保險在談大數據,IBM、微軟、EMC在談大數據,專家教授在談大數據,可是大數據真的讓我們的生活變得更美好了嗎?作為屌絲青年的我們真正感受到大數據的紅利了嗎?不管你信不信,我沒有感受到。也就是說,大數據落地到普通人身的長征,還沒走完。

我們日常生活中使用電腦、平板、手機的數據,被軟硬體伺服器採集加以使用,而我們卻沒有因為貢獻大數據而讓生活更智能,這不符合邏輯。

❺ 簡述身邊大數據成功案例並且用了哪些大數據的數據達到什麼效果

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。

❻ 有意思,個人用大數據可以做哪些有趣的事情

大數據都是很強的 你是想幹嘛的呀 ?

❼ 有沒有一個有具體數據的大數據營銷案例

暫無大數據營銷案例。
目前大數據還都是剛剛興起,第一是擁有大數據的企業很少,第二是擁有大數據且具有足夠的大數據挖掘分析的人才的企業更是屈指可數,第三是大數據挖掘分析的作用在銀行、金融、政務、電商等平台起到的作用都非常大,絕大多數的精力都還放在如何提升效率和效益上,能用於營銷的精力真的很少。

❽ 大數據分析中有哪些有意思的東西

給你介紹幾個大數據的有趣應用案例,你就知道大數據的有意思的地方了

1.啤酒與尿布(這個非常古老和經典的了)

2. 數據新聞讓英國撤軍

3.意料之外:胸部最大的是新疆妹子

4.騰訊圈子把前女友推薦給未婚妻

5.「魔鏡」預知石油市場走向

6.Google成功預測冬季流感

7.大數據與喬布斯癌症治療

8.奧巴馬大選連任成功

9.微軟大數據成功預測奧斯卡21項大獎

10超市預知高中生顧客懷孕

大數據挖掘的樂趣有很多很多的,遠遠不止上述,實際上,大數據在越來越多的領域創造著一個又一個的經典案例

❾ 大數據分析的典型案例有什麼

我說幾個我知道的,智慧圖做了西單大悅城,k11 ,幫他們實現了業態規劃,圖聚也有,但是定位太差,數據准確度沒法說。

❿ 什麼是大數據,大數據的典型案例有哪些

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:

「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。