百度百科大數據
⑴ 大數據是干什麼的 有什麼用
關於大數據,麥肯錫全球研究所給出的定義是:
一種規模大到在獲專取、存儲、管理、分析方屬面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。
大數據的核心作用是數據價值化,簡單說就是大數據讓數據產生各種「價值」,這個數據價值化的過程就是大數據要做的主要事情。
⑵ 大數據是幹嘛的
大數據是一系列技術的統稱,經過多年的發展,大數據已經形成了從數據采版集、整理、傳輸權、存儲、安全、分析、呈現和應用等一系列環節,這些環節涉及到諸多大數據工作崗位,這些工作崗位與物聯網、雲計算也都有密切的聯系。
大數據是一個抽象的概念,對當前無論是企業還是政府、高校等單位面臨的數據無法存儲、無法計算的狀態。
(2)百度百科大數據擴展閱讀:
大數據應用舉例
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
⑶ 什麼是大數據 大數據是什麼意思
大數據是來一種規模大到在獲取、源存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
(3)百度百科大數據擴展閱讀
大數據的價值體現在以三方面:
1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;
2、做小而美模式的中小微企業可以利用大數據做服務轉型;
3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。
⑷ 大數據指的是什麼
大數據,IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉內、管理和處理容的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。
大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
(4)百度百科大數據擴展閱讀:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。
據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了。
⑸ 大數據包括什麼
大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
(5)百度百科大數據擴展閱讀:
大數據的應用
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。