大數據金融學
㈠ 金融財經類專業好還是大數據,人工智慧專業好總感覺現在金融行業不好乾,失業的很多~
首先要根據自己的興趣和自己擅長的強項選擇,不論你選擇什麼行業,只要精於勤,行行出狀元。
㈡ 孩子現在學大數據,但不想從事這種工作,想學金融,學那個專業好
我覺得金融和大數據兩個專業現在都很好找工作,尤其是大數據,現在國家很需要這種數據型人才,而且薪資也很高,可以考慮考慮
㈢ 目前為止哪些學校開設有互聯網金融,大數據
目前國內高校開設互聯網金融專業的並不算多,因為該專業屬於新興的「互聯網+」前沿專業,是伴隨著金融行業互聯網化應運而生的。據我所知,對外經濟貿易大學、武漢大學國際軟體學院率先聯合慧科集團開設了這個專業,隨後河北軟體職業技術學院、山東女子學院等重視學生就業質量的高校也相繼開設了該專業。由於互聯網金融行業的快速發展,市場上對專業的互聯網金融人才的需求急劇增加。因此,可以預見未來會有越來越多的學校開設這個專業。
㈣ 大數據分析和金融統計哪個好學
興趣應該作為首要的因素考慮。如果你有很好的物理基礎,並且對金融感興趣,那就可以選金融數學。 如果你希望職業規劃上相對穩定,並且不怕畢業後十年都不停准備考證的枯燥的話,那可以走精算路線。
㈤ 未來是學大數據好還是金融好
大數據肯定有優勢一些啊。。。。。。。。。未來必定是計算機的時代!!!
㈥ 二本院校,分流時是選金融學還是大數據金融
感覺兩個都可以選擇,總的來說還是顯大數據金融比較合適
㈦ 大數據專業課程有哪些
首先我們要了解java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
㈧ 大數據在金融領域有何應用
你好!大數據在當今社會任何一個領域都有很大用處,比如金融領域,這樣可以通過大數據幫助投資者投資
㈨ 金融領域7大數據科學案例
金融領域7大數據科學案例
1 金融領域有哪些典型數據問題?
2 金融領域應用那些數據科學方法?
近年來,數據科學和機器學習應對一系列主要金融任務的能力已成為一個特別重要的問題。 公司希望知道更多技術帶來的改進以及他們如何重塑業務戰略。
為了幫助您回答這些問題,我們准備了一份對金融行業影響最大的數據科學應用清單。 它們涵蓋了從數據管理到交易策略的各種業務方面,但它們的共同點是增強金融解決方案的巨大前景。
自動化風險管理管理客戶數據預測分析實時分析欺詐識別消費者分析演算法交易深度個性化和定製結論自動化風險管理
風險管理是金融機構極其重要的領域,負責公司的安全性,可信度和戰略決策。 過去幾年來,處理風險管理的方法發生了重大變化,改變了金融部門的性質。 從未像現在這樣,今天的機器學習模型定義了業務發展的載體。
風險可以來自很多來源,例如競爭對手,投資者,監管機構或公司的客戶。 此外,風險的重要性和潛在損失可能不同。 因此,主要步驟是識別,優先考慮和監控風險,這是機器學習的完美任務。通過對大量客戶數據,金融借貸和保險結果的訓練,演算法不僅可以增強風險評分模型,還可以提高成本效率和可持續性。
數據科學和人工智慧(AI)在風險管理中最重要的應用是識別潛在客戶的信譽。 為了為特定客戶建立適當的信用額度,公司使用機器學習演算法來分析過去的支出行為和模式。 這種方法在與新客戶或具有簡簡訊用記錄的客戶合作時也很有用。
雖然金融風險管理流程的數字化和自動化處於早期階段,但潛力巨大。 金融機構仍需要為變革做好准備,這種變革通過實現核心財務流程的自動化,提高財務團隊的分析能力以及進行戰略性技術投資。 但只要公司開始向這個方向發展,利潤就不會讓自己等待。
管理客戶數據
對於金融公司來說,數據是最重要的資源。因此,高效的數據管理是企業成功的關鍵。今天,在結構和數量上存在大量的金融數據:從社交媒體活動和移動互動到市場數據和交易細節。金融專家經常需要處理半結構化或非結構化數據,手動處理這些數據是一個巨大的挑戰。
然而,對於大多數公司來說,將機器學習技術與管理過程集成僅僅是從數據中提取真實知識的必要條件。人工智慧工具,特別是自然語言處理,數據挖掘和文本分析有助於將數據轉化為智能數據治理和更好的業務解決方案,從而提高盈利能力。例如,機器學習演算法可以通過向客戶學習財務歷史數據來分析某些特定財務趨勢和市場發展的影響。最後,這些技術可用於生成自動報告。
預測分析
分析現在是金融服務的核心。 值得特別關注的是預測分析,它揭示了預測未來事件的數據模式,可以立即採取行動。 通過了解社交媒體,新聞趨勢和其他數據源,這些復雜的分析方法已經實現了預測價格和客戶終生價值,未來生活事件,預期流失率和股市走勢等主要應用。 最重要的是,這種技術可以幫助回答復雜的問題 - 如何最好地介入。
實時分析
實時分析通過分析來自不同來源的大量數據從根本上改變財務流程,並快速識別任何變化並找到對其的最佳反應。財務實時分析應用有三個主要方向:
欺詐識別
金融公司有義務保證其用戶的最高安全級別。公司面臨的主要挑戰是找到一個很好的欺詐檢測系統,罪犯總是會採用新的方法並設置新的陷阱。只有稱職的數據科學家才能創建完美的演算法來檢測和預防用戶行為異常或正在進行的各種欺詐工作流程。例如,針對特定用戶的不尋常金融購買警報或大量現金提款將導致阻止這些操作,直到客戶確認為止。在股票市場中,機器學習工具可以識別交易數據中的模式,這可能會指示操縱並提醒員工進行調查。然而,這種演算法最大的優勢在於自我教學的能力,隨著時間的推移變得越來越有效和智能化。
消費者分析
實時分析還有助於更好地了解客戶和有效的個性化。先進的機器學習演算法和客戶情緒分析技術可以從客戶行為,社交媒體互動,他們的反饋和意見中獲得見解,並改善個性化並提高利潤。由於數據量巨大,只有經驗豐富的數據科學家才能精確分解。
演算法交易
這個領域可能受實時分析的影響最大,因為每秒都會受到影響。根據分析傳統和非傳統數據的最新信息,金融機構可以做出實時有利的決策。而且由於這些數據通常只在短時間內才有價值,因此在這個領域具有競爭力意味著使用最快的方法分析數據。
在此領域結合實時和預測分析時,另一個預期會開啟。過去,金融公司不得不聘用能夠開發統計模型並使用歷史數據來創建預測市場機會的交易演算法的數學家。然而,今天人工智慧提供了使這一過程更快的技術,而且特別重要的是 - 不斷改進。
因此,數據科學和人工智慧在交易領域進行了革命,啟動了演算法交易策略。世界上大多數交易所都使用計算機,根據演算法和正確策略制定決策,並考慮到新數據。 人工智慧無限處理大量信息,包括推文,財務指標,新聞和書籍數據,甚至電視節目。 因此,它理解當今的全球趨勢並不斷提高對金融市場的預測。
總而言之,實時和預測分析顯著改變了不同金融領域的狀況。 通過Hadoop,NoSQL和Storm等技術,傳統和非傳統數據集以及最精確的演算法,數據工程師正在改變財務用於工作的方式。
深度個性化和定製
企業認識到,在當今市場競爭的關鍵步驟之一是通過與客戶建立高質量的個性化關系來提高參與度。 這個想法是分析數字客戶體驗,並根據客戶的興趣和偏好對其進行修改。 人工智慧在理解人類語言和情感方面取得重大進展,從而將客戶個性化提升到一個全新的水平。 數據工程師還可以建立模型,研究消費者的行為並發現客戶需要財務建議的情況。 預測分析工具和高級數字交付選項的結合可以幫助完成這項復雜的任務,在最恰當的時機指導客戶獲得最佳財務解決方案,並根據消費習慣,社交人口趨勢,位置和其他偏好建議個性化服務。
結論
對於金融機構來說,數據科學技術的使用提供了一個從競爭中脫穎而出並重塑其業務的巨大機會。大量不斷變化的財務數據造成了將機器學習和AI工具引入業務不同方面的必要性。
我們認為,我們主要關注金融領域的7大數據科學用例,但還有很多其他值得一提的。 如果您有任何進一步的想法,請在評論部分分享您的想法。