『壹』 SPSS能做大數據

spss處理的數據量是有限制的

『貳』 國內真正的大數據分析產品有哪些

國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層——數據報表層——數據分析層——數據展現層
第二維度:用戶級——部門級——企業級——BI級

1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。

Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。

SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。

DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。

BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。

2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。

Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份——商業智能,所以在大數據處理方面的能力更勝一籌。

3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完成大部分SPSS統計分析功能

4、表現層
表現層也叫數據可視化,以上每種工具都幾乎提供了一點展現功能。FineBI和Tableau的可視化功能上文有提過。其實,近年來Excel的可視化越來越棒,配上一些插件,使用感更佳。
PPT:辦公常用,用來寫數據分析報告;
Xmind&網路腦圖:梳理流程,幫助思考分析,展現數據分析的層次;
Xcelsius軟體:Dashboard製作和數據可視化報表工具,可以直接讀取資料庫,在Excel里建模,互聯網展現,最大特色還是可以在PPT中實現動態報表

『叄』 大數據分析和傳統數據分析之間的關系和區別

大數據分析是數據分析的一種,是以新技術(相當於當前主流技術來說)處理數據的數據分析。
數據分析一般需要的是excel的能力,外加需要一些spss、R、之類的能力較為常見。大數據分析一般主要用的 是機器學習、數據挖掘等分析能力。當然,正如加米穀大數據所講,個別崗位可能還需要 架構(hadoop等)、存儲等搭建或者優化的能力。

『肆』 大數據分析的具體內容有哪些

按照我一個在相數科技的朋友給我講的,通常意義上,大數據,又稱巨量資料,指內的是所涉及的容數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。而這些,也就是需要進行大數據分析的內容。
如果具體來說,其實在各行各業均存在大數據,比如氣象大數據中對於溫度、適度、污染指數的分析,企業對產品投放、運營的大數據,對消費者使用情況的大數據等等,這些大數據都可以通過智能分析進行有效的利用。

『伍』 大數據分析一般用什麼工具分析

Excel:日常在做通報、報告和抽樣分析中經常用到,其圖表功能很強大,處理10萬級別的數據很輕松。
UltraEdit:文本工具,比TXT工具好用,打開和運行速度都比較快。
ACCESS:桌面資料庫,主要是用於日常的抽樣分析(做全量統計分析,消耗資源和時間較多,通常分析師會隨機抽取部分數據進行分析),使用SQL語言,處理100萬級別的數據還是很快捷。
Orcle、SQL sever:處理千萬級別的數據需要用到這兩類資料庫。
當然,在自己能力和時間允許的情況下,學習新流行的分布式資料庫及提升自身的編程能力,對未來的職業發展也有很大幫助。
分析軟體主要推薦:
SPSS系列:老牌的統計分析軟體,SPSS Statistics(偏統計功能、市場研究)、SPSS Modeler(偏數據挖掘),不用編程,易學。
SAS:老牌經典挖掘軟體,需要編程。
R:開源軟體,新流行,對非結構化數據處理效率上更高,需編程。

『陸』 常見的大數據分析工具有哪些

大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash

『柒』 spss與大數據分析的關系

相互關聯的關系

『捌』 大數據分析方法有哪些,大數據分析方法介紹

『玖』 大數據分析用什麼軟體數據分析軟體有哪些優缺點是什麼

比較流行的有以下幾種

  1. 最基礎的excel:操作簡單,易學習,數據量較小時,很方便使用

  2. spss:內置很多現成的分析工具,不會代碼都可以直接套用其中的數據分析模式,能數據的數據量也大幅度提升,得出的結論報告也很專業; 缺點的話,不太好定製分析模型

  3. sas和R語言:需要一定的代碼基礎,網上都有開源的代碼包,可以拿來使用,入門門檻相對就高了

最後說下,根據你需要處理的數據量和分析方式,選擇適合自己的軟體來分析

希望對你有幫助吧