大數據存在的安全問題有哪些

【導讀】互聯網時代,數據已成為公司的重要資產,許多公司會使用大數據等現代技術來收集和處理數據。大數據的應用,有助於公司改善業務運營並預測行業趨勢。那麼,大數據存在的安全問題有哪些呢?今天就跟隨小編一起來了解下吧!

一、分布式系統

大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。

二.數據存取

大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。

三.數據不正確

網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。

四.侵犯隱私

大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。

五、雲安全性不足

大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。

以上就是小編今天給大家整理分享關於「大數據存在的安全問題有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

⑵ 大數據存在哪些問題

數據存儲問題:隨著技術不斷發展,數據量從TB上升至PB,EB量級,如果還用傳統的數據存內儲方式容,必將給大數據分析造成諸多不便,這就需要藉助數據的動態處理技術,即隨著數據的規律性變更和顯示需求,對數據進行非定期的處理。同時,數量極大的數據不能直接使用傳統的結構化資料庫進行存儲,人們需要探索一種適合大數據的數據儲存模式,也是當下應該著力解決的一大難題。

分析資源調度問題:大數據產生的時間點,數據量都是很難計算的,這就是大數據的一大特點,不確定性。所以我們需要確立一種動態響應機制,對有限的計算、存儲資源進行合理的配置及調度。另外,如何以最小的成本獲得最理想的分析結果也是一個需要考慮的問題。

專業的分析工具:在發展數據分析技術的同時,傳統的軟體工具不再適用。目前人類科技尚不成熟,距離開發出能夠滿足大數據分析需求的通用軟體還有一定距離。如若不能對這些問題做出處理,在不久的將來大數據的發展就會進入瓶頸,甚至有可能出現一段時間的滯留期,難以持續起到促進經濟發展的作用。

⑶ 何謂大數據大數據的特點,意義和缺陷.

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

大數據,更多的功能是分析過去,提醒現在,展望未來。廣泛應用於商業領域,藉以實現精準營銷,預測趨勢,實現商業利益的最優與最大。體現的價值為:

(1)利用大數據針對大量消費者的消費習慣,精準提供產品或服務;

(2)利用大數據做服務轉型,做小而美模式;

(3)不能充分利用大數據價值的企業,將會在互聯網壓力之下搖搖欲墜。

國家通過結合大數據和高性能的分析,是指效率更加提高,同時也能降低國家運行成本。如:

(1)為成千上萬的車輛規劃實時交通路線,躲避擁堵;

(2)及時解析問題和缺陷的根源,是制度更加完善。

(3)使用點擊流分析和數據挖掘來規避欺詐行為。

大數據的缺陷:

企業遭到黑客攻擊,客戶的資料大量非法流出,再利用大數據分析挖掘,人群進行分類排除,從而讓人更容易受騙。

(3)大數據發展存在的問題擴展閱讀:

2016年3月17日,《中華人民共和國國民經濟和社會發展第十三個五年規劃綱要》發布,其中第二十七章「實施國家大數據戰略」提出:把大數據作為基礎性戰略資源,全面實施促進大數據發展行動,加快推動數據資源共享開放和開發應用,助力產業轉型升級和社會治理創新。

具體包括:加快政府數據開放共享、促進大數據產業健康發展。

⑷ 談談我國大數據發展面臨著哪些制約因素

1.很少有優質可用的數據
這幾年數據交易機構如雨後春筍,「數據變現」成為很多擁有數據積累的傳統企業的新的生財法。目前,我國大數據需求端以互聯網企業為主,覆蓋面不廣,在O2O趨勢下,大型互聯網廠商嘗試引入外部數據支撐金融、生活、語音、旅遊、健康和教育等多種服務。
然而在具體的領域或行業內,我國普遍未形成成型的數據採集、加工、分析和應用鏈條,大量數據源未被激活,大多數數據擁有者沒有數據價值外化的路徑。比如,各醫療健康類應用收集了大量的數據,但沒有像那樣面向醫葯公司售賣數據。與國外相比我國的政府、公共服務、農業應用基本缺位,電信和銀行業更缺少與外部數據的碰撞。
另外,其實數據交易這件事本身就是一個悖論。數據作為一種商品有一定的特殊性,我用了別人也可以用,沒有任何消耗,可以在市場賣很多遍。這就產生一個問題,你這個數據到市場賣,根據經濟學觀點它的價值是零,你賣給我我可以用更低的價格賣給別人,所以數據交易理論上來說也是不可行的。
大數據概念火了以後,很多機構覺得數據存起來就是寶,於是積攢了大量零碎數據放在那裡,到底能發揮什麼作用也未可知。而在和許多真正想用數據做些事情的機構的合作中我們發現,即便是政府機構這樣的權威數據持有方,也存在很多數據缺失、數據錯誤、噪音多各方面的問題。
我們常常在講大數據就用大數據方法,小數據就用小數據方法,完美的數據是永遠等不來的。但這樣會導致什麼問題呢?在實際項目實施過程中,我們的數據科學家們不得不花費大量時間在數據清洗上,這其實是對本來就緊缺的數據人員的一種浪費。
理論上我們中國有很多數據,但不同部門數據存在在不同的地方,格式也不一樣。政府內部本身整合各部門的數據就已經是一件很頭大的事情,更不要提大規模的數據開放。同時數據開放面臨一個嚴重問題就是隱私問題,脫敏遠遠不夠,隱私問題是一個無底洞。比如我們把一個人的支付寶3個月數據拿過來,就可以很輕易的知道這個人今天在門口便利店買了一瓶水,昨天在淘寶買了沙發,每隔三個月會有一筆萬元的支出。那我們就可以很容易推斷這個人剛換了一個租房子的地方,就能了解他的消費習慣。這個數據其實完全是脫敏的,沒有名字、沒有號碼,但絲毫不妨礙我們通過演算法完全的勾勒出這個人的畫像。
2.實際技術與業務之間還有很大距離
大數據行業發展至今,技術與業務之間依然存在巨大著鴻溝。首先,就是數據分析技術本身。數據源企業為實現數據價值變現,嘗試多種方法,甚至自己組建數據分析團隊,可是數據分析是個技術活,1%的誤差都會極大地影響市場份額,術業有專攻,數據變現還是需要專業的數據分析人才來實現。
大數據概念的火熱,做大數據的公司越來越多,產品做得五花八門,數據建模看似誰都可以涉足,但現在數據分析的技術,方法,模型,演算法都有了非常大的改進,跟過去六七十年代完全不一樣,不是說做幾個SAAS軟體或者RAAS軟體就是大數據了,雖然短期看市場火熱,但長遠來說這條路是走不通的,大數據行業發展,技術才是真正的發力點,提高行業准入門檻尤為重要。
其次中國的數據有它的特色,例如在金融行業,目前大部分銀行採用的是風險評分卡,運用專家經驗定義風險變數,基於定性認識進行評分,通過事後風險回檢優化評分卡,風險預警功能較差。雖然央行徵信中心與國內少數技術領先銀行使用的是風險評分模型,但模型方法相對陳舊,如央行所用FICO評分模型為上世紀80年代基於邏輯回歸演算法構建的評分體系,邏輯回歸演算法適合處理線性數據,但實際問題往往是非線性的,特別是信用風險評估場景下。此外,FICO模型沒有針對我國具體業務進行場景細分,建模邏輯並不完全符合我國實際情況,因此導致准確率不足,風險預警能力差。基於此,中國人民銀行徵信中心首次與國內大數據公司合作,這次合作中普林科技應用國際領先的大數據建模分析技術運用決策樹隨機森林,AdaBOOST,GBDT,SVM等演算法,通過對信用報告的數字化解讀與深入洞察,准確預測了違約風險,對貸款審批、貸中管理形成指導,新模型對好壞賬戶的區分度遠高於行業平均水平。此次合作表明我國的大數據難題更需要適應國情的解決方案與本土的技術人才,這對我們的市場提出了一個新問題。
3.人才稀缺
我們國家大數據發展最大的優勢就是市場大,最大的劣勢恰巧就是缺乏相應人才,人才缺乏的程度非常嚴重。首先在國際市場方面,我們要跟國外公司爭人才,然而國外大數據行業同樣十分火熱。而不論在國內還是國外,跟企業競爭人才都是一項艱巨的事業,比如在世界上最好的大學之一的美國普林斯頓大學,想找數學家也是非常困難,人才很容易被大公司挖走,每年都有非常好的數據分析人才被企業挖走。所以人才難覓不只是口頭說說,更是一個亟待解決的問題 大數據是一個交叉學科,涉及統計學,管理編程等多學科,知識點復雜,缺乏系統的學習教程。

⑸ 大數據目前有什麼問題

數據存儲問題:隨著技術不斷發展,數據量從TB上升至PB,EB量級,如果還回用傳統的數據存儲方式答,必將給大數據分析造成諸多不便,這就需要藉助數據的動態處理技術,即隨著數據的規律性變更和顯示需求,對數據進行非定期的處理。同時,數量極大的數據不能直接使用傳統的結構化資料庫進行存儲,人們需要探索一種適合大數據的數據儲存模式,也是當下應該著力解決的一大難題。

分析資源調度問題:大數據產生的時間點,數據量都是很難計算的,這就是大數據的一大特點,不確定性。所以我們需要確立一種動態響應機制,對有限的計算、存儲資源進行合理的配置及調度。另外,如何以最小的成本獲得最理想的分析結果也是一個需要考慮的問題。

專業的分析工具:在發展數據分析技術的同時,傳統的軟體工具不再適用。目前人類科技尚不成熟,距離開發出能夠滿足大數據分析需求的通用軟體還有一定距離。如若不能對這些問題做出處理,在不久的將來大數據的發展就會進入瓶頸,甚至有可能出現一段時間的滯留期,難以持續起到促進經濟發展的作用。

⑹ 什麼是大數據亟待解決的問題

大數據分析能夠幫用戶發掘他們的價值,從而使其在市場競爭中處於更有利的地位,同時提升他們的市場生命力,但其在發展過程中仍有需要解決的問題,依然存在著這樣那樣的問題,在這些問題中我們不得不提其在隱私方面的問題。 隱私問題是大數據亟待解決的問題 大數據挖掘不但可以挖掘數字信息,同樣還能夠挖掘圖像、文本、視頻等等,如今我們甚至能夠通過數據挖掘了解一個人的整天的行動,甚至能夠預判一個即將要做的事情。但當我們的數據挖掘關繫到公民的生活問題時就會遇到一個問題,那就是隱私。隱私問題 隱私是目前很多人都關注的問題,如今,電話推銷的人幾乎天天都有,這就是我們隱私被透露的結果。甚至有的犯罪分子利用從即時通訊上得到的信息,冒充孩子的家長來實施犯罪,這些都是我們需要解決的問題。 那麼目前對個人隱私數據方面的保護如何呢?有,但是目前扔不完善。有的時候我們雖然將注冊信息設為不公開,但是仍然會接到各種騷擾電話。所以在這方面的保護並不完善,這主要是背後一個龐大的利益集團在驅動。而且現在相關的法律法規並不完善,讓個人信息在大數據時代泄露的時間比比皆是。 法律框架的搭建遠遠趕不上新技術的發展,各國對個人隱私也界定不一,為此Facebook還專門設立了首席隱私官這個職位。但是目前的措施並不能夠完全保護個人隱私的安全,個人在大數據時代似乎總是站在被分析的地位。隱私問題是大數據亟待解決的問題。

⑺ 大數據給人們帶來很多好處,還存在哪些弊端

如今大數據是一個很火的話題,常常我們通過大數據擁有了很多便利。大數據在我們生活中扮演著很重要的作用,不過我們也要警惕大數據存在的弊端。接下來就一起來看一下大數據都有哪些弊端吧。 任何事情都有兩面性,我們也不能因為大數據的弊端而否定了它帶給我們生活的便利。也希望數據能夠被妥善保管,不要隨意泄露用戶隱私。商家不要利用大數據最大化賺錢,否則也會失去用戶的支持。
各位讀者,你們又有怎樣的看法呢?歡迎在評論區里留言討論一下。

⑻ 目前大數據發展面臨哪些問題

隨著2017年大數據應用的發展,大數據價值得以充分的體現,大數據在企業和專社會層面成為重要的戰略資屬源,數據成為新的戰略制高點,是大家搶奪的新焦點。一個新行業的出現,必將在工作職位方面有新的需求,大數據的出現也將推出一批新的就業崗位,例如,數據產品經理、大數據演算法工程師、大數據分析師、數據管理專家等等。具有豐富經驗的數據分析人才將成為稀缺的資源,數據驅動型工作將呈現爆炸式的增長。去 大 講台咨詢下,推出在線運用科學混合式自適應學習系統組織線上教學,希望可以幫助到你。

⑼ 我國發展大數據存在哪些問題

(1)產業數據資產化。
(2)產業技術的高創新性。
(3)產業決策智能化。
(4)產業服務個性化。