❶ 如何用大數據分析創造商業價值

大數據分析是研究大量且多樣的數據集(即大數據)的過程,從而揭示隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用信息,這些信息可幫助公司做出更明智的商業決策。通過專業的分析系統和軟體,大數據分析可以指明商業收益的方向,比如新的機遇,有效的營銷,更好的客戶服務,提高運營效率以及競爭優勢等等。
以下是通過大數據分析將大大受益的十大行業:
1. 銀行和證券
通過網路活動監控和自然語言處理程序,監控金融市場,從而減少欺詐幸福易。交易委員會正在使用大數據分析監控股票市場,避免非法交易的發生。
2. 通訊和媒體
同時在多個平台(移動,網路和電視)上實時報道世界各地的事件。媒體的一部分,音樂行業使用大數據關注最新的趨勢,並通過自動調諧軟體創作出流行的曲調。
3. 體育
了解特定地區針對不同活動的收視率模式,並通過分析來監測個人球員和球隊的表現。像板球世界盃,FIFA世界盃和溫布爾頓國際網球錦標賽的體育賽事均有使用大數據分析。
4. 醫療保健
收集公共衛生數據,從而更快地應對個人健康問題,並掌握新病毒株(如埃博拉病毒)在全球傳播的狀態。不同國家衛生部門合並使用大數據分析工具,以便在人口普查後進行數據收集。
5. 教育
針對目前快速發展的各種領域,更新和升級相關文獻。世界各地的大學均使用大數據來檢測和追蹤學生和教師的情況,並通過不同科目的出席率分析學生的興趣喜好。
6. 製造業
通過大數據提高供應鏈管理,提高生產率。製造企業使用這些分析工具,確保以最佳方式分配生產資源,從而獲得最大效益。
7. 保險
通過預測分析處理各種業務,從開發新產品到應對索賠。保險公司使用大數據了解需求最大的政策計劃,並產生更多收益。
8. 消費者貿易
預測和管理人員編制以及庫存需求。消費者貿易公司通過會員制度,記錄會員情況從而發展貿易。
9. 交通運輸
制定更好的路線規劃,交通監控和物流管理。主要是政府為了避免交通堵塞而設立的。
10. 能源
通過智能電表減少電氣泄漏,並幫助用戶管理能源使用情況。負荷調度中心使用大數據分析來監測負荷模式,並根據不同的參數分析能源消耗趨勢之間的差異,並節約能源。

❷ 大數據可以通過以下哪些方式為企業創造價值

knowlesys輿情認為:

大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據提升競爭力?這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。

企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。

成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。

服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。

產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。

❸ 如何正確認識大數據的價值和效益

1、數據使用必須承擔保護的責任與義務

我國數據流通與數據交易主要存在以下問題:數據源活性不夠,數據中介機構還處於起步階段;多源數據的匯集技術尤其是非結構化數據分析技術滯後;缺乏熟悉不同行業並掌握在特定領域使用數據技術的人才。

數據的價值在於融合與挖掘,數據流通、交易有利於促進數據的融合和挖掘,搞活數據從而產生效益。數據共享開放、流通交易和數據保護及數據安全對數據技術提出嚴峻挑戰,對法律的制定及執行提出了很高要求。為此,數據使用必須承擔保護的責任與義務。

❹ 大數據是什麼有什麼價值作用

「大數據」是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。
大數據的應用其實早已滲透到人們生活中的方方面面:亞馬遜運用大數據為客戶推薦商品信息,阿里用大數據成立了小微金融服務集團,而谷歌更是計劃用大數據接管世界??當下,很多行業都開始增加對大數據的需求。大數據時代不僅處理著海量的數據,同時也加工、傳播、分享它們。不知不覺中,數據可視化已經遍布我們生活的每一個角落,畢竟普通用戶往往更關心結果的展示。伴隨去年底網路地圖採用LBS定位春運的可視化大數據,就引起了學界對新聞創新和大數據可視化的熱議。


一、技術價值

大數據,根本上與數學、統計學、計算機學、數據學等基本理論知識無法分割,技術水平突飛猛進給數字領域帶來最直接的躍進。

App研發應用、資料庫編寫應用等促進人類社會技術進步的價值都來源於大數據的發明和運營。

大數據不僅創造了新的計算方式、技術處理方式,更加為其他技術的研發、應用和落地提供基礎,例如人工智慧等。

大數據中客戶與企業進行交易的數據,是大數據技術價值的核心映射。客戶的交易行為通過企業內部系統留存,基本以「事後」數據為主。

交易數據是推進企業數據驅動業務,與客戶聯系溝通、獲得有效和分析數據的初級門檻,無論大數據獲取能力如何發展,直接的交易信息永遠都是第一有效和值得關注的。

淘寶的交易分析報告中提到,大額買單後的重購次單和同店重購次單比例分別為25.0%和16.8%,要明顯高於普通買單的18.8%和10.7%,則表示在首次買單獲取了對賣家服務和商品質量的信任後,次單完全存在放大金額的可能,並且比普通買單的可能要高得多。

由此引導賣家增進服務、堅守質量,並適時推出捆綁推薦,以求同類商品同店大額下單的幾率。

只有有了大數據的處理技術,交易行為才能夠得到記錄分析,企業的大數據技術研發、應用和落地才能擁有基礎,以開發更新更適合時代的企業產業。

目前有很多傳統企業盲目行走大數據的道路,但其實大數據技術能力並沒有建立起來,真正獲得了有效數據並得以分析利用的就很少,很多該做的「埋點」沒有做,數據的統計也缺乏技術支撐。

這時大數據的技術價值就會顯得尤為重要,且是所有價值的基礎,一梁塌,全屋倒。

無法自主革新的企業會求助一些以提供大數據服務為產品的新型公司,也就催生了各種大數據公司雨後春筍般的出現,至於這些公司如何為傳統轉型服務在後面會提到。

二、商業價值

在實際的升級運行中,習慣於傳統經營的企業也許經常會為這樣幾個基礎的問題感到困惑:如何提升運營現狀?目標客群是誰?有哪些特點?與競品相比競爭優勢在哪?現有經營問題又是什麼?

而這些看似簡單的問題背後卻隱藏著海量數據的分析挖掘:客流數據、經營數據、以往活動相關數據、場內店鋪信息、競品數據,類此種種的深入透析才能幫助企業畫像潛客、分析經營、建立會員體系、策劃活動執行。

單就運營而論,數據作為一種度量方式,能夠真實的反映運營狀況,幫助企業進一步了解產品、了解用戶、了解渠道進而優化運營策略。

❺ 大數據時代下如何利用小數據創造大價值

「所謂『小數據』,並不是因為數據量小,而是通過海量數據分析找出真正能幫助用戶做決專策的客觀依據,讓屬其真正實現商業智能。」日前,在線業務優化產品與服務提供商國雙科技揭幕成立「國雙數據中心」,該公司高級副總裁續揚向記者表示,數據對企業決策運營越來越重要,大數據時代來臨,企業最終需要的數據不是單純意義上的大數據,而是通過海量數據挖掘用戶特徵獲取的有價值的「小數據」,進而使企業獲取有價值的用戶信息,科學地分析用戶行為,幫助企業明確品牌定位、優化營銷策略。

「小數據」是價值所在

「如今數據呈爆發式增長,已進入數據『狂潮』時代,過去3年的數據量超過此前400年的數據總量。但是,高容量的數據要能夠具體應用在各個行業才能算是有價值。」國雙科技首席執行官祁國晟認為,大數據具有高容量、多元化、持續性和高價值4個顯著特徵。目前,各行各業的數據量正在迅速增長,使用傳統的資料庫工具已經無法處理這些數據。在硬體發展有限的條件下,通過軟體技術的提升來處理不斷增長的數據量,對數據利用率的提升以及各行業的發展起著重要的推動作用。

❻ 大數據的價值是什麼

大數據對企業產生的一個重要價值就是分析數據的質量,此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。

❼ 如何利用大數據來創造價值

深圳遠標為你解答
大數據如何創造價值
這里列舉5個大數據廣泛適用,能創造質變性的價值並影響機構的設計、組織和管理的方面。
首先,大數據能提高透明度。僅僅讓相關的利益共享者盡可能簡單及時地使用大數據就可以創造極大的價值。例如在公共行業,讓原本孤立的部門間輕易地共享數據,就能明顯減少搜索和處理時間。在製造業中,整合研發、工程和生產單位數據以實現並行工程,就能顯著縮短上實時間並提高質量。
其次,讓發現需求、尋求變化和提高性能的實驗成為可能。當組織機構創建和儲存更多數字形式的業務數據時,他們可以收集更多准確和細節的性能參數(實時或近乎實時),從產品庫存到人員病假等任何事物。
再次能針對細分人口採取定製行動。大數據允許組織機構高度細分市場,專門定製產品和提供精準服務來滿足各種需求。這種方式在市場營銷和風險管理領域眾所周知,但在其他行業可能是革命性的——比如在形成一種同等對待所有群眾的道德觀的公共行業。然而即使是已經使用市場細分多年的消費品和服務公司,也開始部署復雜的大數據技術來瞄準促銷和廣告推廣
還能用自動化演算法取代或支持人類決策。復雜而巧妙的分析可以大幅度改善決策、降低風險和發覺有價值的觀點。對組織來說,像這樣的分析應用,從稅務機構能夠使用自動化風險引擎標記需進一步檢查的候選人,跨越到零售商可以利用演算法優化類似於自動庫存微調和專櫃店與在線銷售實時價格響應的決策過程。在某些情況下,決策不一定是自動的,但通過使用大數據技術和科技,而非小樣本的個人處理和理解電子表格來分析海量、完整的數據會增強決策。決策也許會變得不同,但一些組織已經著手通過分析來自顧客、員工,甚至嵌入在產品內的感測器中的完整數據來決策。
最後,大數據有助於革新商業模式、產品和服務。大數據能夠讓公司創造新產品和服務,強化現存功能,並創建全新的商業模式。製造業正在運用來自實際產品使用的數據,來改善下一代產品的發展並建立創新型售後服務。從導航到基於人們駕駛汽車的位置和方式的財險定價,實時定位數據的出現已經創造了一個基於定位服務的全新篇章。

❽ 大數據如何給企業創造實際價值

第一,通過大數據分析,各行各業都能更快地對變革進行跟蹤,響應全球專經濟快速的變化。屬
第二,在全球金融經濟危機的狀態下,通過數據分析,能夠更好地理解整個經濟危機行為的演變。
第三,能夠更好地滿足大眾和企業服務的需求,而且可以預測市場的變化。
而從大數據利用的方式上,也可產生幾個方面的價值。
首先,大數據的價值密度較低,現在可利用和分析的數據只是冰山一角,數據里的價值遠沒有被發掘出來,所以要利用分析技術去發現它們的潛在價值。
其次,要實現大數據整合創新的價值,通過不同渠道的聚集整合,創造新的數據價值。

❾ 大數據可以通過哪些方式為企業創造價值

其實現有模式的大數據不可能給企業帶來多少價值,其實大數據就是竊取死人信息,這個東西按照現在的演算法有不準確性。好比一個人舉例子,怎麼確定一隻貓,如果是以前我們是按簡化模型來確定的,現在不需要模型而是把所有的貓一隻不落的存入資料庫,而世界這么大,其實這種演算法在現有模式下還行,如果以後空間發展了呢?還有就是你的消費慾望可能是隨時變化的,沒有定性的,因為人是會隨時變化的,一個人活到現在的演算法不能推測你以後的演算法。所以大數據如果以現有的演算法是不可信的。演算法必須創新。

❿ 大數據產生價值決定未來

大數據產生價值決定未來
隨著大數據應用的逐漸深入,大數據蘊含的巨大經濟價值也被企業看重,成為企業青睞的對象,大數據的價值決定大數據的未來發展,而大數據的未來發展也有賴於大數據價值的凸顯和應用的不斷深入,透視當前大數據應用現狀可以看出大數據未來十分可觀。
自大數據概念橫空出世以來,就成為業界廣泛關注的焦點,而大數據概念的出現還要賴於短短幾年出現的海量數據。據統計,互聯網上的數據每兩年翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。當然,海量數據僅僅是「大數據」概念的一部分,只有具備4個「V」的特徵,大數據的定義才算完整,而價值恰恰是決定大數據未來走向的關鍵。
大數據的發展需要三個必要條件:數據源、數據交易、數據產生價值的過程。近年來,社交網路的興起、物聯網的發展和移動互聯網的普及,誕生了大量有價值的數據源,奠定了大數據發展的基礎。大數據時代到來的重要標志,則是大批專業級「數據買賣商」的出現,以及圍繞數據交易形成的,貫穿於收集、整理、分析、應用整個流程的產業鏈條。大數據發展的核心,則是使用戶從海量的非結構化數據和半結構化數據中獲得了新的價值,數據價值是帶動數據交易的原動力。
大數據技術的發展促進了雲計算的落地,雲計算的部署完成又反過來加大了市場對數據創造價值的期待。大數據概念提出之後,市場終於看到了雲計算的獲利方向:各地的一級系統集成商與當地政府合作,建雲數據中心;各大行業巨頭在搭建各自行業的雲平台;IT巨頭想盡辦法申請中國的公有雲牌照。大數據促成了雲計算從概念到落地。藉助於智慧城市概念的普及,雲計算基礎設施已基本准備就緒,一方面完成了大數據應用的硬體基礎;另一方面迫於回收雲計算投資的壓力,市場急需應用部署,大數據恰如雪中送炭,被市場寄予厚望。
隨著雲計算、大數據技術和相關商業環境的不斷成熟,越來越多的「軟體開發者」正在利用跨行業的大數據平台,打造創新價值的大數據應用,而且這一門檻正在不斷降低。因為首先,數據擁有者能夠以微乎其微的成本獲取額外的收入,提高利潤水平;其次,大數據設備廠商需要應用來吸引消費者購買設備,發展合作共贏的夥伴關系勢必比單純銷售設備要有利可圖,一些具有遠見的廠商已經開始通過提供資金、技術支持、入股等方式來扶持這些「軟體開發者」;第三,行業細分市場的數據分析應用需求在不斷加大,對於整個大數據產業鏈來說,創新型的行業數據應用開發者必將是未來整個大數據產業鏈中最為活躍的部分。
未來,有三種企業將在」大數據產業鏈「中處於重要地位:掌握海量有效數據的企業,有著強大數據分析能力的企業,以及創新的「軟體開發者」。