1. 類似尼爾森的國內大數據公司有哪些啊

尼爾森
吧,
商業信息
收集和分析,
慧科訊業
的公司也做這塊,有點類似但是不完全一樣。尼爾森會藉助於很多問卷並且他們不做榜單,慧科訊業是依靠的
大數據分析
,能做榜單篩選服務和
輿情監測

2. 大數據分析類型有哪些,有知道嗎

按照數據結構分類復,制可以分為結構化數據(表格),非結構化數據(視頻,音頻,圖像),半結構化數據(如模型文檔等)。
按照應用場景可以分為工業數據和消費數據兩大類,工業數據主要是指生產製造企業從研發設計,生產製造,經營管理,客戶服務等環節的數據。消費數據主要面向客戶或者需求,比如客戶喜好,客戶評價,市場分布,倉儲率等
按照數據重要程度可以分為,臟數據,低質數據,高質數據以及核心數據,這個就需要結合企業業務需求自行界定。

3. 大數據包括哪些

大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存回儲、NoSQL資料庫答、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
大數據主要技術組件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大數據技術包括數據採集,數據管理,數據分析,數據可視化,數據安全等內容。數據的採集包括感測器採集,系統日誌採集以及網路爬蟲等。數據管理包括傳統的資料庫技術,nosql技術,以及對於針對大規模數據的大數據平台,例如hadoop,spark,storm等。數據分析的核心是機器學習,當然也包括深度學習和強化學習,以及自然語言處理,圖與網路分析等。

4. 大數據除了工控大數據還有什麼類型

其實排序是有兩種方法的:一種是選中所有數據後,點菜單的「數據」——「排序」進行;一種是先把數據的首行選中,然後點菜單的「數據」——「篩選」——「自動篩選」——在首行點開某列的自動篩選的三角符號,點「升序降序」來排序。

看樓主應該是用第二種方法。

根據我的經驗,問題點應該是出在這里,請樓主檢查:
1.自動篩選的所有數據必須連續,不能中間斷開;
2.自動篩選後,在原來的數據後面又增加數據,那篩選的結果和排序就可能不對了。這時請點菜單的「數據」——「篩選」——點擊「自動篩選」把自動篩選去掉,然後重新自動篩選即可。

5. 推薦一本關於大數據,數據分析類似的書籍

書名:誰說菜鳥不會數據分析
作者:張文霖,劉夏璐,狄松
你看看行不行

6. 大數據技術包括哪些

大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。

1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。

2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,

3、基礎架構:雲存儲、分布式文件存儲等。

4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。

5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

7、模型預測:預測模型、機器學習、建模模擬。

8、結果呈現:雲計算、標簽雲、關系圖等。

7. 與大數據相關的工作職位有哪些

說個大概吧

大數據開發工程師:負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等;

數據分析師:進行數據搜集、整理、分析,針對數據分析結論給管理銷售運營提供指導意義的分析意見;

數據挖掘工程師:商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求。

資料庫開發:設計,開發和實施基於客戶需求的資料庫系統,通過理想介面連接資料庫和資料庫工具,優化資料庫系統的性能效率等;

數據管理:資料庫設計、數據遷移、資料庫性能管理、數據安全管理,故障檢修問題、數據備份、數據恢復等;

數據科學家:清洗,管理和組織(大)數據,利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換;

數據產品經理:把數據和業務結合起來做成數據產品。

8. 類似hadoop大數據平台有哪些

Storm, Spark, Hadoop比較
http://www.itpub.net/thread-1882941-1-1.html

9. 常見大數據應用有哪些

Gartner的分析師Doug Laney在講解大數據案例時提到過8個更有新意更典型的案例,可幫助更清晰的理解大數據時代的到來。
1. 梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2. Tipp24 AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3. 沃爾瑪的搜索。這家零售業寡頭為其網站自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4. 快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5. Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6. PredPol Inc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
8. American Express(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。

10. 認知大數據,大數據的數據類型有哪些

數據類型

結構化數據:能夠用數據或統一的結構加以表示,人們稱之為結構化數據,如數字、符號。傳統的關系數據模型,行數據,存儲於資料庫,可用二維表結構表示。

半結構化數據:所謂半結構化數據,就是介於完全結構化數據(如關系型資料庫,面向對象資料庫中的數據)和完全無結構的數據(如聲音、圖像文件等)之間的數據,XML、HTML文檔就屬於半結構化數據。它一般是自描述的,數據的結構和內容混在一起,沒有明顯的區分。

第二層面是技術,技術室大數據價值體現的手段和前進的技術。在這里分別從雲計算, 分布式處理技術,存儲技術和感知技術的發展來說明大數據從採集,處理,存儲到形成結構的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,企業的大數據和個人的大數據等方面來描繪大數據已經展現的美好景象及即將實現的藍圖。