A. 想從零開始自學大數據,請問有哪些書籍推薦

在人人高呼的大數據時代,你是想繼續做一個月薪6K+的碼農,還是想要翻身學習成為炙手可熱名企瘋搶的大數據工程師呢?
隨著互聯網技術的發展,大數據行業前景非常被看好,有很多朋友對大數據行業心嚮往之,卻苦於不知道該如何下手,或者說學習大數據不知道應該看些什麼書。作為一個零基礎大數據入門學習者該看哪些書?今天就給大家分享幾本那些不容錯過的大數據書籍。

1、《數據挖掘》
這是一本關於數據挖掘領域的綜合概述,本書前版曾被KDnuggets的讀者評選為最受歡迎的數據挖掘專著,是一本可讀性極佳的教材。它從資料庫角度全面系統地介紹數據挖掘的概念、方法和技術以及技術研究進展,並重點關注近年來該領域重要和最新的課題——數據倉庫和數據立方體技術,流數據挖掘,社會化網路挖掘,空間、多媒體和其他復雜數據挖掘。
2、《Big Data》
這是一本在大數據的背景下,描述關於數據建模,數據層,數據處理需求分析以及數據架構和存儲實現問題的書。這本書提供了令人耳目一新的全面解決方案。但不可忽略的是,它也引入了大多數開發者並不熟悉的、困擾傳統架構的復雜性問題。本書將教你充分利用集群硬體優勢的Lambda架構,以及專門用來捕獲和分析網路規模數據的新工具,來創建這些系統。
3、《Mining of Massive Datasets》
這是一本書是關於數據挖掘的。但是本書主要關注極大規模數據的挖掘,也就是說這些數據大到無法在內存中存放。由於重點強調數據的規模,所以本書的例子大都來自Web本身或者Web上導出的數據。另外,本書從演算法的角度來看待數據挖掘,即數據挖掘是將演算法應用於數據,而不是使用數據來「訓練」某種類型的機器學習引擎。

B. 大數據相關的書籍有哪些,麻煩推薦一下

初級階段:《大數據時代》
讀完這本書,要求你形成大數據回的概念,對大數據有個全面的答認識和了解。
中級階段:《失控》
用統計的方法,而不是因果的方法,預測未來,用統計的方法來對某些東西進行預測.
高級階段:《復雜性》
指明了一個無窮疊代,即 「關系的關系的……關系」,而智能將在這里涌現,解決復雜性問題預測的關鍵很可能就在這里,這句話打開了一個非常廣闊的前景,將象宇宙一樣沒有窮盡。
高級階段(2):《量子物理史話》
停止爭論吧,上帝真的擲骰子!隨機性是世界的基石,當電子出現在這里時,它是一個隨機的過程,並不需要有誰給它加上難以忍受的條條框框。……而統計規律則把微觀上的無法無天抹平成為宏觀上的井井有條。——摘自《量子物理史話》

C. 大家推薦一本寫得好的關於大數據的書

兩本:
《大數據:正在到來的數據革命》 塗子沛
《大數據時代:生活、工作與思維的大變內革》 維克托•邁爾容-舍恩伯格 (Viktor Mayer-Schönberger) (作者), 肯尼思•庫克耶 (Kenneth Cukier) (作者), 盛楊燕 (譯者), 周濤 (譯者)
嫌少再加兩本:
《刪除:大數據取捨之道》 維克托•邁爾-舍恩伯格 (Viktor Mayer-Schönberger) (作者), 袁傑 (譯者)
《爆發:大數據時代預見未來的新思維》 艾伯特•拉斯洛•巴拉巴西(Albert László Barabási) (作者), 馬慧 (譯者)

D. 大數據入門書籍有哪些

1:<大數據時代>
這是學習大數據必讀的一本書,也是最系統的關於大數據概念的一本書,由維克托·邁爾-舍恩伯格和肯尼斯·庫克耶編寫,主要介紹了大數據理念和生活工作及思維變革的關系。
它被包括寬頻資本董事長田朔寧、知名IT評論人謝文等專業讀者鑒定為「大數據領域最好的著作沒有之一,一本頂一萬本」。有這么好嗎?看完自己評價吧。這本書對這個大規模產生、分享和應用數據的新的大時代進行了闡述和釐清,作者圍繞「要全體不要抽樣、要效率不要絕對精確、要相關不要因果」三大理念,通過數十個商業和學術案例,剖析了萬事萬物數據化和數據復用挖掘的巨大價值。
2:<爆發>
由巴拉巴西編寫,主要講了在一個歷史故事的連續講述中,了解大數據的概念實質。從大數據的歷史開始,能更深入的了解大數據的發展歷程。
巴拉巴西整本書講述的大數據根本目的,是預測。他甚至有零有整地判斷,人類行為93%是可以預測的。打個比方,千百年前人類無法如今天般准確預測天氣,以致某些大致預測的行為都被認為是「通神」,其實核心在於對天氣數據的海量佔有和分析能力。但假如全人類的所有基礎及行為數據全部被佔有全部能分析呢?比如通過智能終端LBS功能採集全部運動軌跡、通過金融系統採集所有支付記錄、通過SNS採集所有社會關系和通過郵件、文檔、社會視頻監控和自我視頻監測採集所有言行記錄,24小時,每分每秒,一生,全地球70億人,那會如何?
3:<大數據>
由徐子沛編寫,看美國政府在大數據開放上的進程與反復,算是個案。如果能夠基本了解這三本的觀點,出門有底氣,見人腰桿直,不再被忽悠。
全書講述的,是大數據在美國政府管理中的應用,以及美國政府運行方式大數據變革的歷史與斗爭,其實也是故事性的。從奧巴馬上台就頒布《信息公開法案》,到設立第一個美國政府首席信息官開始,講述美國政府與民間在社會數據公開的斗爭史,以及美國社會管理向大數據思維轉變的過程。首先,這算是一個最詳實的案例;其次,這代表的不是某種管理方式變革,深處是對民主運行機制的變革與進步。說好了,這本書用心良苦,遠遠超越科普技術領域;說壞了,其心可誅。有一段,民間斗爭,逼迫奧巴馬公布所有每日白宮全部日程,包括接見了誰、談話的全部內容,這不就是個人大數據全公開在公眾人物上的應用嗎?這可比現在所謂官員公開財產的要求高了幾十倍——這要求政府全部行為、全部數據、全部公開,全體公眾隨時可查——技術和成本上其實

E. 有關大數據雲計算的書籍有哪些

你好,關於大數來據書籍有以下基本自了參考看:
1.大數據預測
2.大數據時代
3.大數據分析:決勝互聯網金融時代
4.為數據而生:大數據創新實踐
5.爆發:大數據時代預見未來的新思維
這些書都是不錯的,將來大數據非常的重要。

F. 大神,關於大數據處理方面的書籍有推薦嗎

《大數據來處理之道》作者:何金自池
分析比較了當下流行的大數據處理技術的優劣及適用場景,包括Hadoop、Spark、Storm、Dremel、Drill等,詳細分析了各種技術的應用場景和優缺點;同時闡述了大數據下的日誌分析系統,重點講解了ELK日誌處理方案;最後分析了大數據處理技術的發展趨勢,重點從各種技術的起源、設計思想、架構等方面闡述大數據處理之道。

G. 要學習大數據,有什麼網站,視頻,或者書籍推薦么

搜索學習大數據(你想要的資料名)
就有了。視頻不提供下載。

H. 推薦一本關於大數據,數據分析類似的書籍

1、《Hadoop權威指南》
現在3.1版本剛剛發布,但官方並不推薦在生產環境使用。作為hadoop的入門書籍,從2.x版本開始也不失為良策。
本書從Hadoop的緣起開始,由淺入深,結合理論和實踐,全方位地介紹Hadoop這一高性能處理海量數據集的理想工具。剛剛更新的版本中,相比之前的版本增加了介紹YARN , Parquet , Flume, Crunch , Spark的章節,非常適合於Hadoop 初學者。
2、《Learning Spark》
《Spark 快速大數據分析》是一本為Spark 初學者准備的書,它沒有過多深入實現細節,而是更多關註上層用戶的具體用法。不過,本書絕不僅僅限於Spark 的用法,它對Spark 的核心概念和基本原理也有較為全面的介紹,讓讀者能夠知其然且知其所以然。
3、《Spark機器學習:核心技術與實踐》
以實踐方式助你掌握Spark機器學習技術。本書採用理論與大量實例相結合的方式幫助開發人員掌握使用Spark進行分析和實現機器學習演算法。通過這些示例和Spark在各種企業級系統中的應用,幫助讀者解鎖Spark機器學習演算法的復雜性,通過數據分析產生有價值的數據洞察力。

I. 有什麼比較好的大數據入門的書推薦

1. 《大數據分析:點「數」成金》
你現在正坐在一座金礦上,這些金子或被埋於備份,或正藏在你眼前的數據集里,他們是提升公司效益、拓展新的商業關系、制定更直觀決策的秘訣所在,足以使你的企業更上一層樓。你將明白如何利用、分析和駕馭數據來獲得豐厚回報。作者Frank Ohlhorst厚積數十年的技術經驗寫了此書。該書介紹了如何將大數據應用於各行各業,你將了解到如何對數據進行挖掘,怎樣從數據中揭示趨勢並轉化為競爭策略及提取價值的方法。這些更有意思也是更有效的方法能夠提升企業的智能化水平,將有助於企業解決實際問題,提升利潤空間,提高生產率並發現更多的商業機會。
2.《大數據時代》
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托被譽為」大數據商業應用第一人」,擁有再哈佛大學、牛津大學和新加坡國立大學等多個互聯網研究重鎮任教經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。該書主要講了大數據時代的變革、商業變革和管理變革。《大數據時代》認為大數據的核心就是預測。大數據為人類的生活創造了前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。
3.《雲端時代殺手級應用:大數據分析》
《雲端時代殺手級應用:大數據分析》分析了什麼是大數據、大數據大商機、技術與前瞻三個部分。第一個部分介紹大數據分析的概念,以及企業、政府部門可應用的范疇。什麼是大數據分析?與個人與企業有什麼關系?將對全球產業造成什麼樣的沖擊?第二部分完整介紹了大數據在各產業的應用實況,為企業及政府部門提供應用的方向。提供了全球各地的實際應用案例,涵蓋了零售、金融、政府部門、能源、製造、娛樂等各個行業,充分展示了大數據分析產生的效益。第三部分則簡單介紹了大數據分析所需要的技術及未來的發展趨勢,為讀者提供了應用與研究的方向。
4.《大數據》
本書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例奧巴馬建設」前所未有的開放政府「的雄心、公開財務透明的曲折。《數據質量法》背後隱情,全國醫改法案的波瀾、統一身份證的百年糾結以及雲計算、Facebook和推特等社交媒體等等,為您一一講解數據創新給社會帶來的種種變革和挑戰。
5.《大數據互聯網大規模數據挖掘與分布式處理》。
該書主要講的是海量數集數據挖掘常用的演算法。書中分析了海量數據集數據挖掘常用的演算法,介紹了目前WEB端應用的許多重要話題等。

J. 推薦兩本關於大數據時代的書,謝謝。

市面上如今關來於大數源據的書,近20種。挑出這三本,是有理由的。不僅單本比較靠譜,講述得有意思,而且串聯起來,竟然有邏輯聯系,有互補,好像商量好了似的首先看巴拉巴西的《爆發》,在一個歷史故事的連續講述中,了解大數據的概念實質;接著看舍恩伯格的《大數據時代》,明白大數據理念和生活工作及思維變革的關系;最後翻翻塗子沛的《大數據》,看美國政府在大數據開放上的進程與反復,算是個案。如果能夠基本了解這三本的觀點,出門有底氣,見人腰桿直,不再被忽悠。