大數據里錯誤
A. 大數據還是大錯誤 的主要內容是什麼意思
如今對大抄數據的狂襲熱似乎又讓人想起了《讀者文摘》的故事。現實數據的集合是如此混亂,很難找出來這裡面是否存在樣本偏差。而且由於數據量這么大,一些分析者們似乎認定采樣相關的問題已經不需要考慮了。而事實上,問題依然存在。
B. 怎樣從大數據中篩選出錯誤信息
大數據是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企版業對企權業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和/或虛擬化技術。大數據的意義是由人類日益普及的網路行為所伴生的,受到相關部門、企業採集的,蘊含數據生產者真實意圖、喜好的,非傳統結構和意義的數據 。2013年5月10日,阿里巴巴集團董事局大大馬雲在淘寶十周年晚會上,將卸任阿里集團CEO的職位,並在晚會上做卸任前的演講,馬雲說,大家還沒搞清PC時代的時候,移動互聯網來了,還沒搞清移動互聯網的時候,大數據時代來了。
C. 大數據失敗案例提醒 8個不能犯的錯誤
大數據失敗案例提醒:8個不能犯的錯誤
近年來,大數據旋風以「迅雷不及掩耳之勢」席捲全球,不僅是信息領域,經濟、政治、社會等諸多領域都「磨刀霍霍」向大數據,准備在其中逐得一席之地。然而,很多公司在邁入大數據領域後遭遇「滑鐵盧」。在此,本文盤點了一系列大數據失敗項目,深究其原因,具有警示意義。
對數據過於相信2008年,Google第一次開始預測流感就取得了很好的效果,比美國疾病預防控制中心提前兩禮拜預測到了流感的爆發。但是,幾年之後,Google的預測比實際情況(由防控中心根據全美就診數據推算得出)高出了50%。媒體過於渲染了Google的成功,出於好奇目的而搜索相關關鍵詞的人越來越多,從而導致了數據的扭曲。低估大數據復雜程度在美國有幾個互聯網金融公司專做中小企業貸款。但是中小企業貸款涉及的數據更復雜,而且中小企業涉及到整個行業非常特殊的一些數據,比如非標準的財務報表和不同行業、不同範式的合同,他們沒有很專業的知識,是很難理解或者很難有時間把它准確挖掘出來。當時大數據團隊想用一個很完美的模型把所有的問題都解決掉,比如把市場和信貸的解決方案全部用一個模型來解決,但因為數據的復雜程度,最後證明這種方法是失敗的,而且90%的時間都在做數據清理。這就說明,想通過大數據技術一下子解決所有的問題是很難成功的,而是要用抽絲剝繭、循序漸進的方式。管理層的惰性某家旅遊公司系統通過web日誌數據的挖掘來提升客戶洞察。結果證明,用戶在瀏覽網站之後,隨後的消費行為模式與管理層所認為的不一致。當團隊匯報此事時,管理層認為不值一提。但是,該團隊並沒有放棄,並通過嚴密的A/B測試,回擊了管理層的輕視。這個案例的最終結果,不是每個CIO都能期盼的。但是,有一點是可以確定的:做好和管理層打交道的准備,讓他們充分理解大數據是什麼以及相應的價值。應用場景選擇錯誤一家保險公司想了解日常習慣和購買生命保險意願之間的關聯性。由於隨後覺得習慣太過於寬泛,該公司將調查范疇限定到是否吸煙上。但是,工作仍然沒有實質進展。不到半年,他們就終止了整個項目,因為一直未能發現任何有價值的信息。這個項目的失敗是由於問題的復雜性。在抽煙與否之間,該公司沒有注意到還有大片灰色地帶:很多人是先抽煙而後又戒煙了。在將問題簡單化動機的驅動下,這個部分被忽略了。問題梳理不夠全面一家全球性公司的大數據團隊發現了很多深刻的洞察,並且計劃通過雲讓全公司共享。結果這個團隊低估了效率方面的損耗,由於網路擁塞的問題,無法滿足全球各個分支順暢提交數據運行分析的需求。該公司應該仔細思考下如何支撐大數據項目,梳理所需的技能並協調各IT分支的力量進行支持。由於網路、安全或基礎設施的問題,已經有太多的大數據項目栽了跟頭。缺乏大數據分析技能一家零售公司的首席執行官不認同亞馬遜規模化、扁平化的服務模式,因此讓CIO構建一個客戶推薦引擎。項目最初的規劃是半年為期,但是團隊很快認識到諸如協同過濾(collaborativefiltering)之類的概念無法實現。為此,一個團隊成員提出做一個「假的推薦引擎」,把床單作為唯一的推薦產品。這個假引擎的工作邏輯是:買攪拌機的人會買床單,買野營書籍的人會買床單,買書的人會買床單。就是如此,床單是唯一的、默認的推薦品。盡管可笑,這個主意其實並不壞,默認的推薦也能給企業帶來銷售上的提升。但是,由於大數據相關技能的缺失,真正意義上的引擎未能實現。提出了錯誤的問題一家全球領先的汽車製造商決定開展一個情感分析項目,為期6個月,耗資1千萬美元。項目結束之後,該廠商將結果分享給經銷商並試圖改變銷售模式。然後,所得出的結果最終被證明是錯誤的。項目團隊沒有花足夠的時間去了解經銷商所面臨的問題或業務建議,從而導致相關的分析毫無價值。應用了錯誤的模型。某銀行為判斷電信行業的客戶流失情況,從電信業聘請了一位專家,後者也很快構建了評估用戶是否即將流失的模型。當時已進入評測驗證的最後階段,模型很快就將上線,而銀行也開始准備給那些被認為即將流失的客戶發出信件加以挽留。但是,為了保險起見,一位內部專家被要求對模型進行評估。這位銀行業專家很快發現了令人驚奇的事情:不錯,那些客戶的確即將流失,但並不是因為對銀行的服務不滿意。他們之所以轉移財產(有時是悄無聲息的),是因為感情問題——正在為離婚做准備。可見,了解模型的適用性、數據抽象的級別以及模型中隱含的細微差別,這些都是非常具有挑戰性的。管理層阻力盡管數據當中包含大量重要信息,但Fortune Knowledge公司發現有62%的企業領導者仍然傾向於相信自己的直覺,更有61%的受訪者認為領導者的實際洞察力在決策過程中擁有高於數據分析結論的優先參考價值。選擇錯誤的使用方法企業往往會犯下兩種錯誤,要麼構建起一套過分激進、自己根本無法駕馭的大數據項目,要麼嘗試利用傳統數據技術處理大數據問題。無論是哪種情況,都很有可能導致項目陷入困境。提出錯誤的問題數據科學非常復雜,其中包含專業知識門類(需要深入了解銀行、零售或者其它行業的實際業務狀況);數學與統計學經驗以及編程技能等等。很多企業所僱用的數據科學家只了解數學與編程方面的知識,卻欠缺最重要的技能組成部分——對相關行業的了解,因此最好能從企業內部出發尋找數據科學家。缺乏必要的技能組合這項理由與「提出錯誤的問題」緊密相關。很多大數據項目之所以陷入困境甚至最終失敗,正是因為不具備必要的相關技能。通常負責此類項目的都是IT技術人員——而他們往往無法向數據提出足以指導決策的正確問題。與企業戰略存在沖突要讓大數據項目獲得成功,大家必須擺脫將其作為單一「項目」的思路、真正把它當成企業使用數據的核心方式。問題在於,其它部門的價值或者戰略目標有可能在優先順序方面高於大數據,這種沖突往往會令我們有力無處使。大數據孤島大數據供應商總愛談論「數據湖」或者「數據中樞」,但事實上很多企業建立起來的只能算是「數據水坑兒」,各個水坑兒之間存在著明顯的邊界——例如市場營銷數據水坑兒與製造數據水坑兒等等。需要強調的是,只有盡量緩和不同部門之間的隔閡並將各方的數據流匯總起來,大數據才能真正發揮自身價值。在大數據技術之外遇到了其它意外狀況。數據分析僅僅是大數據項目當中的組成部分之一,訪問並處理數據的能力同樣重要。除此之外,常常被忽略的因素還有網路傳輸能力限制與人員培訓等等。迴避問題有時候我們可以肯定或者懷疑數據會迫使自身做出一些原本希望盡量避免的運營舉措,例如制葯行業之所以如此排斥情感分析機制、是因為他們不希望將不良副作用報告給美國食品葯品管理局並承擔隨之而來的法律責任。在這份理由清單中,大家可能已經發現了一個共同的主題:無論我們如何高度關注數據本身,都會有人為因素介入進來。即使我們努力希望獲取對數據的全面控制權,大數據處理流程最終還是由人來打理的,其中包括眾多初始決策——例如選擇哪些數據進行收集與分析、向分析結論提出哪些問題等等。為防止大數據項目遭遇失敗,引入迭代機制是非常必要的。使用靈活而開放的數據基礎設施,保證其允許企業員工不斷調整實際方案、直到他們的努力獲得理想的回饋,最終以迭代為武器順利邁向大數據有效使用的勝利彼岸。
D. 個人大數據徵信出錯 需要像哪個部門反應情況
可以向當地中國人民銀行徵信管理中心進行反映,事先應該是准備好相關資料
E. 下面對大數據特徵的說法中哪個是錯誤的
大數據(bigdata),是指無法抄在襲可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。1.數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。2.要求快速響應,市場變化快,要求能及時快速的響應變化
F. 大數據系統數據表導入時出現錯誤是什麼原因
1.導入的時候access中的表名必須是大寫的,否則導進去之後,因為sqlplus運行到後台的時候會把所有字元自動變為大寫,而oracle大小寫敏感,所以生成的小寫表無法訪問,你用toad或DBARtsion也是白搭
2.表中的欄位名稱比如user之類的改進改名,很有可能就會因為這個卡掉,得重新導
3.注意資料庫中的數據,有可能會出現因為數據導致導入一半後卡住,出現這種問題的時候多半是因為備注轉化為的對象類型不對
4.ACCESS中的備注問題,這個是個頭疼的問題,真tm頭疼,剛開始我用OLE
DB方式連接資料庫,備注默認轉化的oracle數據類型為LONG,但是TNND每張oracle表中最多隻有一個LONG類型的欄位,(古怪的規定~!我找了半天沒找到原因)
G. 大數據中存在哪些誤解
1.大數據是新時代的新玩意
事實上,數據分析一點也不新。早從數百年前的啟蒙時代,學者們便已開始遵循科學方法,一步步拆解事物形成背後的原因。科學家先觀察,取得並分析數據,歸納出假說,然後再經過不斷實證,逐漸形成定律。因此我們說的大數據,充其量只是科學方法的應用。
2.100TB以上才叫大數據
數據的大小,事實上沒有明確的界線。更重要的,數據的大小,不一定有意義。數據大,也不代表一定能做出准確的預測─假設你擁有地球70億人口的姓名、性別、生日、身高、體重、膚色、視力,以及他們的上網行為等種種數據,如果題目是要預測他們明年的收入分布,這個龐大的資料庫,恐怕還是無法幫上你什麼。所以數據在精不在多,重點是要達成的任務,不是儲存的數量。
3.數據非常客觀
採集數據的軟硬體,是人為設計的,因此不可能做到絕對的客觀。手機停留在某個畫面,就代表你在欣賞這個內容嗎?很難說,或許你只是在跟旁邊的朋友聊天。對某個發文點贊,就代表你真心喜歡這則資訊嗎?也很難說,說不定只是喜歡發文的人,或是手滑不小心按到。
4.數據可以告訴你不知道的內幕
就像字面顯現的,數據只能告訴你不知道的數據。但它究竟代表什麼樣的內幕,必須要靠歸納者自行去解讀。舉例來說,分析你的App使用者資料後,發現21-30歲女性族群佔比最大,這可能代表著你的App對這種人最有吸引力,但也可能代表當初推廣團隊在發廣告時,比較針對這樣的族群。究竟事實是什麼?往往需要更進一步的綜合比較、實驗分析,才能逼近。
5.大數據是資訊部門的問題
大數據的收集與儲存,的確可以歸類為資訊部門的業務。但定義該收集什麼,如何收集,收集後該如何應用,絕對是業務主導部門該負責的。要求IT部門把大數據做好,就好像要求財務部門提升公司獲利一樣,是本末倒置的。
關於大數據中存在哪些誤解,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
H. c語言中,大數據轉化成小數據會有錯誤什麼意思
例如一個浮點數范圍比一個整數大,從浮點數轉為整數會丟失精度,乃至溢出
I. 常見的大數據項目失敗原因及應對措施有哪些
常見的大數據項目失敗原因:
1、數據泄露
這是做大數據項目最忌諱的一點,數據一泄露,毫無疑問,項目合作者必然會成為數據泄露的受害者。如果競爭對手獲得了機密數據,那麼一般的投資人都會考慮到數據的安全性而放棄這個項目的投資或者轉向投資別的項目,那麼對不起,數據泄露你的項目就已經失敗了。
2、不夠方便簡潔
有的程序過於復雜,導致很多人怕麻煩不願意去接觸。高度定製開發的工具可以讓系統保持適當的精簡化,並且能夠無縫地集成到現有的技術基礎架構中。這樣的項目開發能夠更好的找到受眾,而且也更容易接被接受。
3、數據不具備時效性
信息在現代這個社會也越來越擁有更高的社會價值,信息也越來越具有生產力。信息的及時性有助於幫助你更好的洞察社會現狀然後做出判斷,比別人更能夠及時抓住機遇,這樣才會更容易成功。
應對措施有:
以身作則 ,要有意識地向員工展示他們如何使用數據做決策。企業能夠建立、發展和維持一支具有所需專業數據知識的業務問題的全能的數據團隊。只有漸漸適應了這種運作模式才能更好的做大數據項目。進行相應的績效評估。
J. 大數據掃碼網路出覡錯誤原因
你好,這個錯誤的原因
就是你的網路信號不穩定
大數據接收不了網路傳輸
就會出現錯誤的情況
你可以把網路刷新一下
然後再去掃碼,就可以解決了