① 統計模型和大數據模型所使用的主要演算法有什麼異同

以每24小時作為一份時間(而非自然日),根據用戶的配置有兩種工作模式:帶狀模式中,用戶僅定義開始日期時,從開始日期(含)開始,每份時間1個分片地無限增加下去;環狀模式中,用戶定義了開始日期和結束日期時,以結束日期(含)和開始日期(含)之間的時間份數作為分片總數(分片數量固定),以類似取模的方式路由到這些分片里。

1. DBLE 啟動時,讀取用戶在 rule.xml 配置的 sBeginDate 來確定起始時間
2. 讀取用戶在 rule.xml 配置的 sPartionDay 來確定每個 MySQL 分片承載多少天內的數據
3. 讀取用戶在 rule.xml 配置的 dateFormat 來確定分片索引的日期格式
4. 在 DBLE 的運行過程中,用戶訪問使用這個演算法的表時,WHERE 子句中的分片索引值(字元串),會被提取出來嘗試轉換成 java 內部的時間類型
5. 然後求分片索引值與起始時間的差,除以 MySQL 分片承載的天數,確定所屬分片

1. DBLE 啟動時,讀取用戶在 rule.xml 配置的起始時間 sBeginDate、終止時間 sEndDate 和每個 MySQL 分片承載多少天數據 sPartionDay
2. 根據用戶設置,建立起以 sBeginDate 開始,每 sPartionDay 天一個分片,直到 sEndDate 為止的一個環,把分片串聯串聯起來
3. 讀取用戶在 rule.xml 配置的 defaultNode
4. 在 DBLE 的運行過程中,用戶訪問使用這個演算法的表時,WHERE 子句中的分片索引值(字元串),會被提取出來嘗試轉換成 Java 內部的日期類型
5. 然後求分片索引值與起始日期的差:如果分片索引值不早於 sBeginDate(哪怕晚於 sEndDate),就以 MySQL 分片承載的天數為模數,對分片索引值求模得到所屬分片;如果分片索引值早於 sBeginDate,就會被放到 defaultNode 分片上

與MyCat的類似分片演算法對比

中間件
DBLE
MyCat

分片演算法種類 date 分區演算法 按日期(天)分片
兩種中間件的取模範圍分片演算法使用上無差別

開發注意點
【分片索引】1. 必須是字元串,而且 java.text.SimpleDateFormat 能基於用戶指定的 dateFormat 來轉換成 java.util.Date
【分片索引】2. 提供帶狀模式和環狀模式兩種模式
【分片索引】3. 帶狀模式以 sBeginDate(含)起,以 86400000 毫秒(24 小時整)為一份,每 sPartionDay 份為一個分片,理論上分片數量可以無限增長,但是出現 sBeginDate 之前的數據而且沒有設定 defaultNode 的話,會路由失敗(如果有 defaultNode,則路由至 defaultNode)
【分片索引】4. 環狀模式以 86400000 毫秒(24 小時整)為一份,每 sPartionDay 份為一個分片,以 sBeginDate(含)到 sEndDate(含)的時間長度除以單個分片長度得到恆定的分片數量,但是出現 sBeginDate 之前的數據而且沒有設定 defaultNode 的話,會路由失敗(如果有 defaultNode,則路由至 defaultNode)
【分片索引】5. 無論哪種模式,分片索引欄位的格式化字元串 dateFormat 由用戶指定
【分片索引】6. 無論哪種模式,劃分不是以日歷時間為准,無法對應自然月和自然年,且會受閏秒問題影響

運維注意點
【擴容】1. 帶狀模式中,隨著 sBeginDate 之後的數據出現,分片數量的增加無需再平衡
【擴容】2. 帶狀模式沒有自動增添分片的能力,需要運維手工提前增加分片;如果路由策略計算出的分片並不存在時,會導致失敗
【擴容】3. 環狀模式中,如果新舊 [sBeginDate,sEndDate] 之間有重疊,需要進行部分數據遷移;如果新舊 [sBeginDate,sEndDate] 之間沒有重疊,需要數據再平衡

配置注意點
【配置項】1. 在 rule.xml 中,可配置項為 <propertyname="sBeginDate"> 、 <propertyname="sPartionDay"> 、 <propertyname="dateFormat"> 、 <propertyname="sEndDate"> 和 <propertyname="defaultNode">
【配置項】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 規范的字元串,用於告知 DBLE 如何解析sBeginDate和sEndDate

【配置項】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必須是符合 dateFormat 的日期字元串

【配置項】4.在 rule.xml 中配置 <propertyname="sEndDate">,必須是符合 dateFormat 的日期字元串;配置了該項使用的是環狀模式,若沒有配置該項則使用的是帶狀模式

【配置項】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非負整數,該分片策略以 86400000 毫秒(24 小時整)作為一份,而 sPartionDay 告訴 DBLE 把每多少份放在同一個分片

【配置項】6.在 rule.xml 中配置 <propertyname="defaultNode"> 標簽,非必須配置項,不配置該項的話,用戶的分片索引值沒落在 mapFile 定義

② 對於大數據開發,需要掌握哪些大數據演算法

不管是什麼行業的數據分析師,必須要掌握的技能是: 該行業的行業知識和經驗,不能低於行業專家的平均水平 必須具有的數學知識,例如統計分析、數理統計、模糊數學、線性代數、建模方法等等 IT技術:資料庫技術、大數據技術、離散數學演算法。

③ 為什麼人工智慧和大數據都要學演算法

無論是人工智慧還是大數據,都有不足之處,還需要人操作,所以都要學演算法。

④ 哪些演算法可以應用於大數據挖掘

基本上傳統
數據挖掘
中的演算法都可以應用,只是在大數據挖掘時需要額外考慮演算法復雜性對於數據量的關系,如果是呈指數之類的關系,就不能應用了。

⑤ 需要掌握哪些大數據演算法

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1.C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法.C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1)用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2)在樹構造過程中進行剪枝;
3)能夠完成對連續屬性的離散化處理;
4)能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2.Thek-meansalgorithm即K-Means演算法
k-meansalgorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k 3.Supportvectormachines
支持向量機,英文為SupportVectorMachine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.CBurges的《模式識別支持向量機指南》。vanderWalt和Barnard將支持向量機和其他分類器進行了比較。
4.TheApriorialgorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5.最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(LatentVariabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(DataClustering)領域。
6.PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7.AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8.kNN:k-nearestneighborclassification
K最近鄰(k-NearestNeighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9.NaiveBayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(DecisionTreeModel)和樸素貝葉斯模型(NaiveBayesianModel,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。
10.CART:分類與回歸樹
CART,。在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

⑥ 想學大數據處理挖掘會使用到的相關演算法和統計學知識,推薦基本書,謝謝

我最近買了一本書覺得還不錯,但是不知道適合你不,我找了簡本,你可以自己下載看看,覺得有用可以去購買的哈零基礎學大數據演算法零基礎學大數據演算法

⑦ 大數據常用演算法有哪些

made it," sai

⑧ 大數據工程師和演算法工程師的區別是什麼

大數據挖掘工程師需要了解整套數據流入的過程,包括數據的接入、預處理,然後需要知道怎麼用數據解決實際的業務問題,說白就是想辦法讓數據產生價值。
他需要知道一整個數據到業務輸出的機制或者說是系統,可能涉及到復雜的演算法轉化,也可能只是簡單的規則轉化,或者多個模型的轉化組合輸出等等,他是一個比較全面而概括性定位。
而演算法工程師則不一樣,他們的職責我認為更純粹,他們需要知道如何把現實問題轉化為數學的模型,並且把模型調到極致,從而解決問題。所以,演算法工程師工作內容更單一,但是更專,需要更好的數學功底。

⑨ 大數據演算法有哪些

有很多事應該是直接進行一些用數據證明就可以進行計算,所以這個安排了部分少的。