1. 大數據處理的過程是怎麼樣的

數據收集-清洗數據-建模-標簽化。興潤達

2. 大數據的處理流程包括了哪些環節

處理大數據的四個環節:

  • 收集:原始數據種類多樣,格式、位置、存儲、時效性等迥異內。數據收集容從異構數據源中收集數據並轉換成相應的格式方便處理。

  • 存儲:收集好的數據需要根據成本、格式、查詢、業務邏輯等需求,存放在合適的存儲中,方便進一步的分析。

  • 變形:原始數據需要變形與增強之後才適合分析,比如網頁日誌中把IP地址替換成省市、感測器數據的糾錯、用戶行為統計等。

  • 分析:通過整理好的數據分析what happened、why it happened、what is happening和what will happen,幫助企業決策。

3. 大數據的處理流程包括了哪些環節

處理大數據的四個環節:

  • 收集:原始數據種類多樣,格式、位置、存儲、回時效性等迥異。數答據收集從異構數據源中收集數據並轉換成相應的格式方便處理。

  • 存儲:收集好的數據需要根據成本、格式、查詢、業務邏輯等需求,存放在合適的存儲中,方便進一步的分析。

  • 變形:原始數據需要變形與增強之後才適合分析,比如網頁日誌中把IP地址替換成省市、感測器數據的糾錯、用戶行為統計等。

  • 分析:通過整理好的數據分析what happened、why it happened、what is happening和what will happen,幫助企業決策。

4. 大數據的處理流程是

大數據處理流程主要包括數據收集、數據預處理、數據存儲、數據處理與分析、數據展示/數據可視化、數據應用等環節,其中數據質量貫穿於整個大數據流程,每一個數據處理環節都會對大數據質量產生影響作用。

5. 大數據分析的流程淺析 大數據整理過程分析

大數據分析的流程淺析:大數據整理過程分析

數據整理是數據分析過程中最重要的環節,在大數據分析過程中也是如此。在小數據時代,數據整理包括數據的清洗、數據轉換、歸類編碼和數字編碼等過程,其中數據清洗占據最重要的位置,就是檢查數據一致性,處理無效值和缺失值等操作。在大數據時代,這些工作被弱化了,在有些大數據的演算法和應用中,基本不再進行數據清洗了,因為大數據的多樣化使得其數據。有一定的不精確性。但數據轉換和編碼過程還是需要的。下面以大數據分析中文本分類的例子,來分析大數據整理的過程。

在本例中,以mahout為大數據分析軟體,文本分類演算法選用樸素貝葉斯演算法(new bayes),分類對象是來自不同類別的新聞數據。

當我們使用網頁爬蟲,每小時源源不斷的從多個不同類別的新聞網站上取得數據時,取得的這些數據都是文本數據,也就是非結構化數據,這些數據是不需要進行數據清洗過程,但它們在進入到mahout實現的樸素貝葉斯演算法時,需要進行必要的數據轉換。該轉換主要分兩個步驟:

1.數據系列化

由於取得的大量的文本數據集中,每個新聞佔一個文檔,共有無數個小的文件,由於Mahout運行在Hadoop的HDFS上,HDFS是為大文件設計的。如果我們把這些無窮多個小文件都拷貝上去,這樣是非常不合適。試想:假設對1000萬篇新聞進行分類,難道要拷貝1000w個文件么?這樣會使HDFS中運行name node節點的終端崩潰掉。

因此,Mahout採用SequenceFile作為其基本的數據交換格式。其思路是:通過調用mahout內置的解析器,掃描所有目錄和文件,並把每個文件都轉成單行文本,以目錄名開頭,跟著是文檔出現的所有單詞,這樣就把無窮多個小文件,轉換成一個系列化的大文件。然後把這個大文件,再上傳到HDFS上,就可以充分發揮HDFS分布式文件系統的優勢。當然,這個轉換過程由mahout的內置工具完成,而大數據分析師這個時候只需要把所有的新聞按文件夾分好類放置好,同時運行mahout內置的解析器命令就可以了。

2.文本內容向量化

簡單地說就是把文本內容中的每個單詞(去除一些連接詞後)轉換成數據,復雜地說就是進行向量空間模型化(VSM)。該過程使每個單詞都有一個編號,這個編號是就它在文檔向量所擁有的維度。這個工作在mahout中實現時,大數據分析師也只需要執行其中的一個命令,就可以輕松地實現文本內容的向量化。

有了這些被向量化的數據,再通過mahout的樸素貝葉斯演算法,我們就可以對計算機訓練出一套規則,根據這個規則,機器就可以對後續收集的新聞數據進行自動的分類了。

從上述文本分類的大數據整理過程可以看出,大數據時代的數據整理過程不再強調數據的精確性,而強調的是對非結構化數據的數量化。當然,不同的大數據分析應用使用的演算法也不一樣,其數據整理過程也不太一樣,但從總體上看,大數據分析的數據整理區別於小數據時代的精確性,而變得更粗放一些。

以上是小編為大家分享的關於大數據分析的流程淺析 大數據整理過程分析的相關內容,更多信息可以關注環球青藤分享更多干貨

6. 大數據的利用過程是什麼

大數據處理:採集、導入/預處理、統計/分析、挖掘

7. 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

  • 聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;

  • 化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;

  • 開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。

8. 大數據的預處理過程包括

大數據採集過程中通常有一個或多個數據源,這些數據源包括同構或異構的資料庫、文件系統、服務介面等,易受到雜訊數據、數據值缺失、數據沖突等影響,因此需首先對收集到的大數據集合進行預處理,以保證大數據分析與預測結果的准確性與價值性。

大數據的預處理環節主要包括數據清理、數據集成、數據歸約與數據轉換等內容,可以大大提高大數據的總體質量,是大數據過程質量的體現。 數據清理技術包括對數據的不一致檢測、雜訊數據的識別、數據過濾與修正等方面,有利於提高大數據的一致性、准確性、真實性和可用性等方面的質量;

數據集成則是將多個數據源的數據進行集成,從而形成集中、統一的資料庫、數據立方體等,這一過程有利於提高大數據的完整性、一致性、安全性和可用性等方面質量;

數據歸約是在不損害分析結果准確性的前提下降低數據集規模,使之簡化,包括維歸約、數據歸約、數據抽樣等技術,這一過程有利於提高大數據的價值密度,即提高大數據存儲的價值性。

數據轉換處理包括基於規則或元數據的轉換、基於模型與學習的轉換等技術,可通過轉換實現數據統一,這一過程有利於提高大數據的一致性和可用性。

總之,數據預處理環節有利於提高大數據的一致性、准確性、真實性、可用性、完整性、安全性和價值性等方面質量,而大數據預處理中的相關技術是影響大數據過程質量的關鍵因素

9. 大數據的分析步驟

大數據的含義 並非僅僅是指數據量非常龐大,同樣是指數據的類別多樣化,比如圖片類信息、音頻類信息、視頻類信息、文字類信息等,同樣被包含在大數據內。所以領域非常廣,可以說以前傳統意義上的各種信息分析,都包含在大數據分析的含義內。

無論是現在流行的大數據分析還是傳統的小數據分析,大致步驟都是一樣的:
首先你要確定你的分析目的是什麼
其次是根據分析目的確定分析思路,以及分析的內容、分析的方法
第三是根據目的、思路、方法、內容 收集數據信息
第四 是 採用確定的分析方法 進行相應的分析 以實現目的