大數據分析平台哪家好

以下為大家介紹幾個代表性數據分析平台:
1、 Cloudera
Cloudera提供一個可擴展、靈活、集成的平台,可用來方便的管理您的企業中快速增長的多種多樣的數據,從而部署和管理Hadoop和相關項目、操作和分析您的數據以及保護數據的安全。Cloudera Manager是一個復雜的應用程序,用於部署、管理、監控CDH部署並診斷問題,Cloudera Manager提供Admin Console,這是一種基於Web的用戶界面,是您的企業數據管理簡單而直接,它還包括Cloudera Manager API,可用來獲取集群運行狀況信息和度量以及配置Cloudera Manager。
2、 星環Transwarp
基於hadoop生態系統的大數據平台公司,國內唯一入選過Gartner魔力象限的大數據平台公司,對hadoop不穩定的部分進行了優化,功能上進行了細化,為企業提供hadoop大數據引擎及資料庫工具。
3、 阿里數加
阿里雲發布的一站式大數據平台,覆蓋了企業數倉、商業智能、機器學習、數據可視化等領域,可以提供數據採集、數據深度融合、計算和挖掘服務,將計算的幾個通過可視化工具進行個性化的數據分析和展現,圖形展示和客戶感知良好,但是需要捆綁阿里雲才能使用,部分體驗功能一般,需要有一定的知識基礎。maxcompute(原名ODPS)是數加底層的計算引擎,有兩個維度可以看這個計算引擎的性能,一個是6小時處理100PB的數據,相當於1億部高清電影,另外一個是單集群規模過萬台,並支持多集群聯合計算。
4、 華為FusionInsight
基於Apache進行功能增強的企業級大數據存儲、查詢和分析的統一平台。完全開放的大數據平台,可運行在開放的x86架構伺服器上,它以海量數據處理引擎和實時數據處理引擎為核心,針對金融、運營商等數據密集型行業的運行維護、應用開發等需求,打造了敏捷、智慧、可信的平台軟體
5、網易猛獁
網易猛獁大數據平台使一站式的大數據應用開發和數據管理平台,包括大數據開發套件和hadoop發行版兩部分。大數據開發套件主要包含數據開發、任務運維、自助分析、數據管理、項目管理及多租戶管理等。大數據開發套件將數據開發、數據分析、數據ETL等數據科學工作通過工作流的方式有效地串聯起來,提高了數據開發工程師和數據分析工程師的工作效率。Hadoop發行版涵蓋了網易大數據所有底層平台組件,包括自研組件、基於開源改造的組件。豐富而全面的組件,提供完善的平台能力,使其能輕易地構建不同領域的解決方案,滿足不同類型的業務需求。
6.知於大數據分析平台
知於平台的定位與當今流行的平台定位不一樣,它針對的主要是中小型企業,為中小型企業提供大數據解決方案。現階段,平台主打的產品是輿情系統、文章傳播分析與網站排名監測,每個服務的價格單次在50元左右,性價比極高。

Ⅱ 商務智能平台哪個質量好大數據分析服務數據

大數據分析的關鍵在於數據清洗,對已入庫的海量數據進行清洗篩選。從設計上大數據分析幾點要素:

● 數據聚合與共享:匯聚政府各部門的政務信息資源,形成政務領域的權威資料庫,通過大數據平台的處理能力對各類結構化和非結構數據進行整合、加工、匯總,為相關部門的數據分析提供數據支持。提供政府各部門各系統間文件、資料庫及API等數據交換服務功能。提供跨部門數據共享、分布式計算、分布式存儲服務,實現數據一站式統一管理。

● 全局態勢感知:通過多種工具應用展現人口、經濟、就業、醫療、教育、環境、資源等政務相關數據,使得政府部門能夠清晰洞察相關業務領域的客觀現狀,並在現狀數據中探索多維變數的相關性和相關領域的發展趨勢。

● 綜合決策與專題決策:結合人口、社會、經濟、環境、資源等多方面變數構建綜合系統動力學模型,模擬社會宏觀發展情況,預測各類指標數據,通過調整政策變數來模擬不同政策方案的實施效果,輔助政府制訂發展規劃。在特定的行業領域,應用專題決策模型發現政務數據中的潛在關聯、因果關系、可能風險,並結合行業專家的咨詢分析提供政務決策支持服務。

● 決策效果評估與反饋:系統可以通過模擬模型,對政策執行效果進行模擬、評估和調整,並跟蹤對比不同政策執行後的數據情況,為決策者和研究人員提供量化評估反饋的工具。還可通過在線報告的形式,對決策方案、政策執行周期內的數據、需解決的問題及其對策等內容進行匯總

Ⅲ 大數據平台是什麼什麼時候需要大數據平台如何建立大數據平台

首先我們要了解java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。

Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。

Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。

Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

Ⅳ 企業的大數據分析平台應該如何構建

①確認數據分析方向。比如是分析社交數據,還是電商數據,亦或者是視頻數據,或者搜索數據。
②確認數據來源。比如來自騰訊,來自網路,來自阿里巴巴,來自實體店。
③數據分析師,去分析你獲取的數據。

Ⅳ 常用的大數據分析軟體有哪些

國內的數據分析軟體比較多,大數據分析軟體推薦選擇Smartbi Insight(點擊連鏈接可以直接專免費下載,或者進入屬smartbi.com.cn ,在線體驗使用),定位於前端數據分析,對接各種業務資料庫,數據倉庫和大數據平台,滿足各種數據分析應用需求,如大數據分析,自助探索分析,地圖可視化,移動管理駕駛艙,指揮大屏幕,企業報表平台等。

Ⅵ 國內比較好的大數據 公司有哪些

大數據公司按出身可分為三類:
一類是有經過檢驗的大數據核心技術能力和大平台的運營能力的平台型公司,代表企業有網路、騰訊、阿里巴巴(2C)等。他們已經擁有核心大數據能力,如數據採集,數據存儲,數據分析,數據可視化以及數據安全等。
第二是有大數據核心技術的公司,如基礎設施公司,華為、中興、浪潮等大公司;還有大數據各個領域的專業的技術公司,如數據挖掘、數據買賣、演算法和模型、數據存儲、可視化等。
第三類提供大數據行業解決方案的公司,如安防、金融、農業、政務、旅遊等行業解決方案。這些企業往往是軟體公司起步,轉而做SAAS,然後做大數據。這類企業對行業的理解更深,大數據應用場景更實際。

Ⅶ 國內做大數據的公司有哪些

1、上海市大數據股份有限公司(簡稱「上海大數據股份」),是經上海市人民政府批准成立的國有控股混合所有制企業。

致力於成為智慧城市建設的主力軍、國內大數據應用領域的領軍企業和全球領先的公共大數據管理和價值挖掘解決方案提供商,滿足政府對公共數據治理和提升城市管理及公共服務水平的要求,構建公共大數據與商業數據服務、以及政企數據融合的橋梁,促進社會經濟發展。

2、輝略(上海)大數據科技有限公司,目前在中國交通(城市智能信號燈優化模型與平台,交通預算決策系統模型等)、環境(PM2.5污染檢測和治理)、醫療(醫院WIFI定位模型,病歷匹配模型等)、汽車(用戶購買轉化率模型)等領域進行大數據項目運營與模型開發。

3、成都市大數據股份有限公司成立於2013年,作為成都市實施國家大數據發展戰略的載體,2018年完成股份制改革並掛牌新三板,成都產業集團全資持股,主要涉及數據運營、投資並購、信息技術三大業務方向。

(7)質量大數據平台擴展閱讀:

大數據發展的一些趨勢:

趨勢一:數據的資源化

何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。

趨勢二:與雲計算的深度結合

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

Ⅷ 如何創建一個大數據平台

所謂的大數據平台不是獨立存在的,比如百度是依賴搜索引擎獲得大數據並開展業務的,阿里是通過電子商務交易獲得大數據並開展業務的,騰訊是通過社交獲得大數據並開始業務的,所以說大數據平台不是獨立存在的,重點是如何搜集和沉澱數據,如何分析數據並挖掘數據的價值。

我可能還不夠資格回答這個問題,沒有經歷過一個公司大數據平台從無到有到復雜的過程。不過說說看法吧,也算是梳理一下想法找找噴。
這是個需求驅動的過程。
曾經聽過spotify的分享,印象很深的是,他們分享說,他們的hadoop集群第一次故障是因為,機器放在靠窗的地方,太陽曬了當機了(笑)。從簡單的沒有機房放在自家窗前的集群到一直到現在復雜的數據平台,這是一個不斷演進的過程。
對小公司來說,大概自己找一兩台機器架個集群算算,也算是大數據平台了。在初創階段,數據量會很小,不需要多大的規模。這時候組件選擇也很隨意,Hadoop一套,任務調度用腳本或者輕量的框架比如luigi之類的,數據分析可能hive還不如導入RMDB快。監控和部署也許都沒時間整理,用腳本或者輕量的監控,大約是沒有ganglia、nagios,puppet什麼的。這個階段也許算是技術積累,用傳統手段還是真大數據平台都是兩可的事情,但是為了今後的擴展性,這時候上Hadoop也許是不錯的選擇。
當進入高速發展期,也許擴容會跟不上計劃,不少公司可能會遷移平台到雲上,比如AWS阿里雲什麼的。小規模高速發展的平台,這種方式應該是經濟實惠的,省了運維和管理的成本,擴容比較省心。要解決的是選擇平台本身提供的服務,計算成本,打通數據出入的通道。整個數據平台本身如果走這條路,可能就已經基本成型了。走這條路的比較有名的應該是netflix。
也有一個階段,你發現雲服務的費用太高,雖然省了你很多事,但是花錢嗖嗖的。幾個老闆一合計,再玩下去下個月工資發布出來了。然後無奈之下公司開始往私有集群遷移。這時候你大概需要一群靠譜的運維,幫你監管機器,之前兩三台機器登錄上去看看狀態換個磁碟什麼的也許就不可能了,你面對的是成百上千台主機,有些關鍵服務必須保證穩定,有些是數據節點,磁碟三天兩頭損耗,網路可能被壓得不堪重負。你需要一個靠譜的人設計網路布局,設計運維規范,架設監控,值班團隊走起7*24小時隨時准備出台。然後上面再有平台組真的大數據平台走起。
然後是選型,如果有技術實力,可以直接用社區的一整套,自己管起來,監控部署什麼的自己走起。這個階段部署監控和用戶管理什麼的都不可能像兩三個節點那樣人肉搞了,配置管理,部署管理都需要專門的平台和組件;定期Review用戶的作業和使用情況,決定是否擴容,清理數據等等。否則等機器和業務進一步增加,團隊可能會死的很慘,疲於奔命,每天事故不斷,進入惡性循環。
當然有金錢實力的大戶可以找Cloudera,Hortonworks,國內可以找華為星環,會省不少事,適合非互聯網土豪。當然互聯網公司也有用這些東西的,比如Ebay。
接下去你可能需要一些重量的組件幫你做一些事情。
比如你的數據接入,之前可能找個定時腳本或者爬log發包找個伺服器接收寫入HDFS,現在可能不行了,這些大概沒有高性能,沒有異常保障,你需要更強壯的解決方案,比如Flume之類的。
你的業務不斷壯大,老闆需要看的報表越來越多,需要訓練的數據也需要清洗,你就需要任務調度,比如oozie或者azkaban之類的,這些系統幫你管理關鍵任務的調度和監控。
數據分析人員的數據大概可能漸漸從RDBMS搬遷到集群了,因為傳統資料庫已經完全hold不住了,但他們不會寫代碼,所以你上馬了Hive。然後很多用戶用了Hive覺得太慢,你就又上馬交互分析系統,比如Presto,Impala或者SparkSQL。
你的數據科學家需要寫ML代碼,他們跟你說你需要Mahout或者Spark MLLib,於是你也部署了這些。
至此可能數據平台已經是工程師的日常工作場所了,大多數業務都會遷移過來。這時候你可能面臨很多不同的問題。
比如各個業務線數據各種數據表多的一塌糊塗,不管是你還是寫數據的人大概都不知道數據從哪兒來,接下去到哪兒去。你就自己搞了一套元數據管理的系統。
你分析性能,發現你們的數據都是上百Column,各種復雜的Query,裸存的Text格式即便壓縮了也還是慢的要死,於是你主推用戶都使用列存,Parquet,ORC之類的。
又或者你發現你們的ETL很長,中間生成好多臨時數據,於是你下狠心把pipeline改寫成Spark了。
再接下來也許你會想到花時間去維護一個門戶,把這些零散的組件都整合到一起,提供統一的用戶體驗,比如一鍵就能把數據從資料庫chua一下拉到HDFS導入Hive,也能一鍵就chua一下再搞回去;點幾下就能設定一個定時任務,每天跑了給老闆自動推送報表;或者點一下就能起一個Storm的topology;或者界面上寫幾個Query就能查詢Hbase的數據。這時候你的數據平台算是成型了。
當然,磕磕碰碰免不了。每天你都有新的問題和挑戰,否則你就要失業了不是?
你發現社區不斷在解決你遇到過的問題,於是你們架構師每天分出很多時間去看社區的進展,有了什麼新工具,有什麼公司發布了什麼項目解決了什麼問題,興許你就能用上。
上了這些亂七八糟的東西,你以為就安生了?Hadoop平台的一個大特點就是坑多。尤其是新做的功能新起的項目。對於平台組的人,老闆如果知道這是天然坑多的平台,那他也許會很高興,因為跟進社區,幫忙修bug,一起互動其實是很提升公司影響力的實情。當然如果老闆不理解,你就自求多福吧,招幾個老司機,出了問題能馬上帶路才是正道。當然團隊的技術積累不能不跟上,因為數據平台還是亂世,三天不跟進你就不知道世界是什麼樣了。任何一個新技術,都是坑啊坑啊修啊修啊才完善的。如果是關鍵業務換技術,那需要小心再小心,技術主管也要有足夠的積累,能夠駕馭,知道收益和風險。