首代人工智慧
⑴ 人工智慧的發展史是什麼
【1950-1956年是人工智慧的誕生年】
圖靈測試1950
Dartmouth 會議1956
(1956年夏季,以麥卡賽、明斯基、羅切斯特和申農等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關問題,並首次提出了「人工智慧」這一術語,它標志著「人工智慧」這門新興學科的正式誕生。)
【1956-1974 年是人工智慧的黃金年】
第一個人工智慧程序LT邏輯理論家1958(西蒙和紐維爾)
LISP編程語言1958(約翰麥卡錫)
用於機器翻譯的語義網1960(馬斯特曼和劍橋大學同事)
模式識別-第一個機器學習論文發表(1963)
Dendral 專家系統1965
基於規則的Mycin醫學診斷程序1974
【1974-1980年是人工智慧第一個冬天】
人工智慧:綜合調查1973(來特希爾)
項目失敗,列強削減科研經費
【1980-1987年是人工智慧繁榮期】
AAAI在斯坦福大學召開第一屆全國大會1980
日本啟動第五代計算機用於知識處理1982
決策樹模型帶動機器學習復甦1980中期
ANN及多層神經網路1980中期
【1987-1993年是人工智慧第二個冬天】
Lisp機市場崩潰1987
列強再次取消科研經費1988
專家系統滑翔谷底1993
日本第五代機退場1990年代
【1993-現在突破期】
IBM深藍戰勝卡斯帕羅夫1997
斯坦福大學Stanley 贏得無人駕駛汽車挑戰賽2005
深度學習論文發表2006
IBM的沃森機器人問答比賽奪魁2011
谷歌啟動谷歌大腦2011
蘋果公司的Siri上線2012
微軟通用實時翻譯系統2012
微軟Cortana 上線2014
網路度秘2015
IBM發布truenorth晶元2014
阿爾法狗打敗人類棋手2016
⑵ 人工智慧的具體發展歷史是什麼
【1950-1956年是人工智慧的誕生年】
圖靈測試1950
Dartmouth 會議1956
(1956年夏季,以麥卡賽、明斯基、羅切斯特和申農等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關問題,並首次提出了「人工智慧」這一術語,它標志著「人工智慧」這門新興學科的正式誕生。)
【1956-1974 年是人工智慧的黃金年】
第一個人工智慧程序LT邏輯理論家1958(西蒙和紐維爾)
LISP編程語言1958(約翰麥卡錫)
用於機器翻譯的語義網1960(馬斯特曼和劍橋大學同事)
模式識別-第一個機器學習論文發表(1963)
Dendral 專家系統1965
基於規則的Mycin醫學診斷程序1974
【1974-1980年是人工智慧第一個冬天】
人工智慧:綜合調查1973(來特希爾)
項目失敗,列強削減科研經費
【1980-1987年是人工智慧繁榮期】
AAAI在斯坦福大學召開第一屆全國大會1980
日本啟動第五代計算機用於知識處理1982
決策樹模型帶動機器學習復甦1980中期
ANN及多層神經網路1980中期
【1987-1993年是人工智慧第二個冬天】
Lisp機市場崩潰1987
列強再次取消科研經費1988
專家系統滑翔谷底1993
日本第五代機退場1990年代
【1993-現在突破期】
IBM深藍戰勝卡斯帕羅夫1997
斯坦福大學Stanley 贏得無人駕駛汽車挑戰賽2005
深度學習論文發表2006
IBM的沃森機器人問答比賽奪魁2011
谷歌啟動谷歌大腦2011
蘋果公司的Siri上線2012
微軟通用實時翻譯系統2012
微軟Cortana 上線2014
網路度秘2015
IBM發布truenorth晶元2014
阿爾法狗打敗人類棋手2016
⑶ 人工智慧機屬於第幾代計算機
第五代計算機是把信息採集、存儲、處理、通信同人工智慧結合在一起的智能計算機系統。
它能進行數值計算或處理一般的信息,主要能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,能夠幫助人們進行判斷、決策、開拓未知領域和獲得新的知識。
人-機之間可以直接通過自然語言(聲音、文字)或圖形圖象交換信息。第五代計算機又稱新一代計算機。
⑷ 人工智慧學科誕生於什麼時期
、人工智慧之父——圖靈(Alan Turing)提出:機器會思考嗎?**如果一台機器能夠與人類對話而不被辨別出其機器的身份,那麼這台機器具有智能的特徵。**同時,圖靈還預言創造具有真正智能的機器的可能性。
AI誕生
在1956年達特茅斯學院舉行的一次會議上,正式確立了人工智慧為研究學科。
2006年達特茅斯會議當事人重聚,左起:Trenchard More、John McCarthy、Marvin Minsky、Oliver Selfridge、Ray Solomonoff
第一次發展高潮(1955年—1974年)
達特茅斯會議之後是大發現的時代。對很多人來講,這一階段開發出來的程序堪稱神奇:計算機可以解決代數應用題、證明幾何定理、學習和使用英語。在眾多研究當中,搜索式推理、自然語言、微世界在當時最具影響力。
當時成就
1.人工神經網路在30-50年代被提出,1951年Marvin Minsky製造出第一台神經網路機
2.貝爾曼公式(增強學習雛形)被提出
3.感知器(深度學習雛形)被提出
4.搜索式推理被提出
5.自然語言被提出
6.首次提出人工智慧擁有模仿智能的特徵,懂得使用語言,懂得形成抽象概念並解決人類現存問題
7.Arthur Samuel在五十年代中期和六十年代初開發的國際象棋程序,棋力已經可以挑戰具有相當水平的業余愛好者
8.機器人SHAKEY項目受到了大力宣傳,它能夠對自己的行為進行「推理」;人們將其視作世界上第一台通用機器人
9.微世界的提出
存在的問題——第一次寒冬
研究學者認為具有完全智能的機器將在二十年內出現並給出了很多預言,如機器將能完成人能做到的一切工作、將製造出一台具有人類平均智能的機器。但很快就打臉了,AI遭遇到瓶頸。由於此前的過於樂觀使人們期待過高,當AI研究人員的承諾無法兌現時,公眾開始激烈批評AI研究人員,許多機構不斷減少對人工智慧研究的資助,直至停止撥款。
1.計算機運算能力遭遇瓶頸,無法解決指數型爆炸的復雜計算問題
2.常識和推理需要大量對世界的認識信息,計算機達不到「看懂」和「聽懂」的地步
3.無法解決莫拉維克悖論
4.無法解決部分涉及自動規劃的邏輯問題
5.神經網路研究學者遭遇冷落
說明:莫拉維克悖論:如果機器像數學天才一樣下象棋,那麼它能模仿嬰兒學習又有多難呢?然而,事實證明這是相當難的。
第二次發展高潮(1980年—1987年)
**「專家系統」**的AI程序開始為全世界的公司所點贊,人工智慧研究迎來了新一輪高潮。由於專家系統僅限於一個很小的領域,從而避免了常識問題。「知識處理」隨之也成為了主流 AI 研究的焦點。
⑸ 國內人工智慧有哪些代表公司和產品
國內值得關注的人工智慧公司有:網路、騰訊、阿里巴巴、搜狗等多家大型企業,他們被視作創新典範的人工智慧企業。人工智慧會帶來社會變革,使得AI技術無處不在,滲透至各行各業。
⑹ 人工智慧發展史
歷史 突飛猛進
1950年阿蘭·圖靈出版《計算機與智能》。
1956年約翰·麥卡錫在美國達特矛斯電腦大會上「創造」「人工智慧 」一詞。
1956年美國卡內基·梅隆大學展示世界上第一個人工智慧軟體的工作。
1958年約翰·麥卡錫在麻省理工學院發明Lisp語言———一種A.I.語言。
1964年麻省理工學院的丹尼·巴洛向世人展示,電腦能掌握足夠的自然語言從而解決了開發計算機代數詞彙程序的難題。
1965年約瑟夫·魏岑堡建造了ELIZA———一種互動程序,它能以英語與人就任意話題展開對話。
1969年斯坦福大學研製出Shakey————一種集運動、理解和解決問題能力於一身的機器人。
1979年第一台電腦控制的自動行走器「斯坦福車」誕生。
1983年世界第一家批量生產統一規格電腦的公司「思考機器」誕生。
1985年哈羅德·科岑編寫的繪圖軟體Aaron在A.I.大會亮相。
90年代A.I.技術的發展在各個領域均展示長足發展————學習、教學、案件推理、策劃、自然環境認識及方位識別、翻譯,乃至游戲軟體等領域都瞄準了A.I.的研發。
1997年IBM(國際商用機械公司)製造的電腦「深藍」擊敗了國際象棋冠軍加里·卡斯帕羅夫。
90年代末以A.I.技術為基礎的網路信息搜索軟體已是國際互聯網的基本構件。
2000年互動機械寵物面世。麻省理工學院推出了會做數十種面部表情的機器人Kisinel。
現在 流行擋不住
商業上的成功,成為實驗室研究工作的催化劑。A.I.的邊界正一步步向人類智慧逼進。
全球的高科技實驗室不約而同盯上了A.I.大腦,這其中響當當的名字包括卡內基·梅隆大學,IBM和日本的本田汽車公司。
在比利時,Starlab(星實驗室)正開發種能取代真貓大腦工作的人工大腦。據「人工大腦網站」報道,它將擁有約7500個人工腦神經細胞。它將能自如地操控貓咪行走,玩耍毛線球。據估計它將在2002年完成。
軟體在將復雜決策程序化整為零方面取得突破。像外貌識別等看似簡單的人類能力實際涉及廣泛、復雜的認知和判斷步驟。今天的電腦軟體越來越精於模仿人類最精細的思維。而計算機硬體在追趕人腦能力方面亦不遺餘力。
目前世界上最快的超級電腦————位於美國加利福利亞州勞倫斯·立弗摩爾國家實驗室的IBM制「ASCI白色」已經是有人腦0·1%的運算能力。
IBM正在研製的「藍色牛仔」(BlueJean)的每秒運算能力估計將與人腦相當。IBM研發部主管保羅·霍恩說BlueJean將在4年後開始運行。
斯坦福大學A.I.領域的首席專家埃里克·霍維茲及其許多同行相信,A.I.技術迎來突破發展的日子近在眼前,那時,A.I.將細分並派生出跨越出廣泛領域的學科。
未來 聰明過人?
關於A.I.人們最迫切希望知道的問題是,它真能和人一般聰明嗎?許多科學家相信,這只是個時間上的問題。A.I.軟體設計師庫爾茲維爾認為遲至2020年A.I.即可聰明過人。IBM的霍恩估計比較保守,他認為A.I.趕上人還需要40—50年時間。AT&T的斯通則說他的目標是在2050前組建一隻能挑戰曼聯的A.I.足球隊。他這不是開玩笑。
在許多方面,A.I.大腦比人類更有優勢。人腦的學習吸收新知識的過程非常慢。要說一口流利的英語至少得半年或兩三年時間(吹牛廣告中的例子除外)。而要讓A.I.學會講法語,只需為它裝上一個說法語軟體,數秒之間一個A.I.法語專家便誕生了。
另一個更難解答的問題:A.I.是否能擁有情感。目前沒有人有把握回答這個問題。
於是剩下一個最可怕的問題:A.I.機器人能變得比人類更聰明,並反戈一擊與人類為敵?庫爾茲維爾、技術學家比爾·喬伊認為這並非不可能。霍恩在這個問題上拿不太穩。
霍恩認為雖然電腦的粗略運算能力可超過人類,但它不可能具備人類所有精細的特徵,因為人類對自己的大腦擁有的許多微妙能力並不了解,更無從仿模相應軟體。
庫爾維茲的看法比較樂觀,他認為人類在開發超級A.I.的同時,在對它們的引導和管理方面也將相應提高,因此將永遠走在前面,掌握控制權。
⑺ 人工智慧有哪幾個主要學派
目前人工智慧的主要學派有下面三家:
(1)符號主義(symbolicism),又稱為邏輯主義(logicism)、心理學派(psychologism)或計算機學派(computerism),其原理主要為物理符號系統(即符號操作系統)假設和有限合理性原理。
(2)連接主義(connectionism),又稱為仿生學派(bionicsism)或生理學派(physiologism),其主要原理為神經網路及神經網路間的連接機制與學習演算法。
(3)行為主義(actionism),又稱為進化主義(evolutionism)或控制論學派(cyberneticsism),其原理為控制論及感知-動作型控制系統。
他們對人工智慧發展歷史具有不同的看法。
1、符號主義認為人工智慧源於數理邏輯。數理邏輯從19世紀末起得以迅速發展,到20世紀30年代開始用於描述智能行為。計算機出現後,又再計算機上實現了邏輯演繹系統。其有代表性的成果為啟發式程序LT邏輯理論家,證明了38條數學定理,表了可以應用計算機研究人的思維多成,模擬人類智能活動。正是這些符號主義者,早在1956年首先採用「人工智慧」這個術語。後來又發展了啟發式演算法->專家系統->知識工程理論與技術,並在20世紀80年代取得很大發展。符號主義曾長期一枝獨秀,為人工智慧的發展作出重要貢獻,尤其是專家系統的成功開發與應用,為人工智慧走向工程應用和實現理論聯系實際具有特別重要的意義。在人工智慧的其他學派出現之後,符號主義仍然是人工智慧的主流派別。這個學派的代表任務有紐厄爾(Newell)、西蒙(Simon)和尼爾遜(Nilsson)等。
2、連接主義認為人工智慧源於仿生學,特別是對人腦模型的研究。它的代表性成果是1943年由生理學家麥卡洛克(McCulloch)和數理邏輯學家皮茨(Pitts)創立的腦模型,即MP模型,開創了用電子裝置模仿人腦結構和功能的新途徑。它從神經元開始進而研究神經網路模型和腦模型,開辟了人工智慧的又一發展道路。20世紀60~70年代,連接主義,尤其是對以感知機(perceptron)為代表的腦模型的研究出現過熱潮,由於受到當時的理論模型、生物原型和技術條件的限制,腦模型研究在20世紀70年代後期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年發表兩篇重要論文,提出用硬體模擬神經網路以後,連接主義才又重新抬頭。1986年,魯梅爾哈特(Rumelhart)等人提出多層網路中的反向傳播演算法(BP)演算法。此後,連接主義勢頭大振,從模型到演算法,從理論分析到工程實現,偉神經網路計算機走向市場打下基礎。現在,對人工神經網路(ANN)的研究熱情仍然較高,但研究成果沒有像預想的那樣好。
3、行為主義認為人工智慧源於控制論。控制論思想早在20世紀40~50年代就成為時代思潮的重要部分,影響了早期的人工智慧工作者。維納(Wiener)和麥克洛克(McCulloch)等人提出的控制論和自組織系統以及錢學森等人提出的工程式控制制論和生物控制論,影響了許多領域。控制論把神經系統的工作原理與信息理論、控制理論、邏輯以及計算機聯系起來。早期的研究工作重點是模擬人在控制過程中的智能行為和作用,如對自尋優、自適應、自鎮定、自組織和自學習等控制論系統的研究,並進行「控制論動物」的研製。到20世紀60~70年代,上述這些控制論系統的研究取得一定進展,播下智能控制和智能機器人的種子,並在20世紀80年代誕生了智能控制和智能機器人系統。行為主義是20世紀末才以人工智慧新學派的面孔出現的,引起許多人的興趣。這一學派的代表作者首推布魯克斯(Brooks)的六足行走機器人,它被看作是新一代的「控制論動物」,是一個基於感知-動作模式模擬昆蟲行為的控制系統
⑻ 人工智慧是怎麼起源的
人工智慧(Artificial Intelligence), 英文縮寫為 AI, 是一門由計算機科學、控制論、資訊理論、語言學、神經生理學、心理學、數學、哲學等多種學科相互滲透而發展起來的綜合性新學科。