大數據課程培訓課程
㈠ 大數據要學哪些課程
大數據存儲階段:復百hbase、hive、sqoop。制
大數度汪跡山據架構設計階困中段:Flume分布式、Zookeeper、Kafka。
大數據實時計算階段:Mahout、Spark、storm。
大數據數據采州差集階段:Python、Scala。
大數據商業實戰階內段:實操企業大數據處理業務場景,分析需求、解決方案實施,技術實戰應用。
㈡ 大數據培訓課程大綱要學什麼課程
課綱不一樣,看是大數據開發還是大數據分析了,我學的大數據分析可視化,學的主要有Python入門、sql、oracle、tableau、帆軟、Informatica、Excel等等
我剛出來半年,視頻錄播可能還不算落後,有視頻可***
㈢ 大數據學習需要哪些課程
主修課程:面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、java編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等
㈣ 大數據培訓課程都學什麼
基礎階段:Linux、Docker、KVM、MySQL基礎、Oracle基礎、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、歷史,HDFS工作原理,YARN介紹及組件介紹。
大數據存儲階段:hbase、hive、sqoop。
大數據架構設計階段:Flume分布式、Zookeeper、Kafka。
大數據實時計算階段:Mahout、Spark、storm。
大數據數據採集階段:Python、Scala。
大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。
大數據分析的幾個方面:
1、可視化分析:可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法:大數據分析的理論核心就是數據挖掘演算法。
3、預測性分析:從大數據中挖掘出特點,通過科學的建立模型,從而預測未來的數據。
4、語義引擎:需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5、數據質量和數據管理:能夠保證分析結果的真實性
㈤ 大數據培訓課程哪個專業
這個要看你在哪個城市了,每個城市所存在的機構都不一樣。最好選擇覆蓋地區廣的,比較權威的培訓機構。
大數據的專業要求很高。目前敢培訓大數據的學校都是具備一定專業性的,主要看看是否能提供真實的案例來供學生們分析來進行專業性的判斷。
多看看網路上的口碑。找到真正適合自己的培訓機構。
主要就是師資力量,授課形式,課程是否完整細致,環境如何,就業後的情況如何等等
㈥ 零基礎大數據培訓課程有哪些
大數據學什麼
大數據培訓課程主要包括8個階段,按照順序學習就可以了,選擇大數據培訓機構,重點關注機構的口碑情況,還要看看師資力量、就業信息、課程體系等等方面,希望你早日學有所成。
㈦ 大數據專業課程有哪些
首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
㈧ 有哪些好的大數據培訓課程
在當地看看有什麼相關的培訓學校
具體咨詢吧還是
每個學校的課程內容都是不一樣的
這是三點共圓的大數據課程方向
你可以了解一下
基礎部分
主要技能:
JavaSE、Linux操作基礎、資料庫、JSP、Servlet、JSP+Servlet+JDBC企業級項目介紹
Hadoop大數據階段
主要技能:
初識Hadoop、HDFS體系結構和Shell以及Java操作、詳細講解MapRe
ce、MapRece案
Hive/HBase資料庫
主要技能:
數據倉庫Hive、分布式資料庫HBase
Storm流式計算
主要技能:
全面掌握Storm內部機制和原理,Redis緩存系統課程大綱、Kafka課程、Storm實時數據處理
Spark內存計算
主要技能:
Scala課程、Spark大數據處理、Spark
Streaming實時計算實時數據處理
項目評審與就業服務
主要技能:
通過綜合項目評審,掌握面試技巧,綜合項目評審、就業常見問題的解決
㈨ 哪裡的大數據培訓課程比較好
第一個問題:大數據好不好學?
總結了一下幾種情況,供參考。
1.對於有開發經驗的同學來說,學大數據還是比較容易的,比如你現在是做JAVA開發的,那麼你轉行大數據做JAVA大數據開發,只需要把大數據框以及相關大數據技術學到,再輔以一定的項目練習,基本就可以幹活了;如果你現在是做的Python開發,同樣你也只需要學好大數據框架以及相關技術,再輔以相關項目就可以從事Python大數據開發了。
2.如果你是零基礎,學習能力一般,在理解概念會稍微慢一點,比如學到JAVA面向對象的時候,這部分同學就比較懵了,但是只要肯付出,願意多問,願意去琢磨,也能得到理想的結果。
3.零基礎學習能力很強,比如畢業於211、985高校,相對來說,學起來就比較輕松。在我們的大數據培訓班,50%以上都是這樣的學生,不得不說,學習能力強,學啥都快,不光是編程。
第一種有開發經驗,他們會去主動學習;第三種學習能力強,他們相信自己能學會。但第二種他們缺乏自信,也是比較猶豫的一部分人。
三種人中,也以第二種學生居多。如果想轉行,三點建議,可供參考。
1.不要猶豫,先學。先找學習資料,從零開始學,只有你真的開始去學了,才能知道好不好學。
2.統招本科學歷,學大數據,找大數據開發工作。目前一線城市的企業,對大數據開發工程師的學歷要求都是本科。
3.大專學歷,學JAVA,找JAVA開發工作。學歷不夠,先把JAVA學好,找一份JAVA開發工作,如果對大數據感興趣,可做2年JAVA開發後,再轉大數據,用開發經驗來彌補學歷的短板。
希望對你有幫助~
㈩ 大數據培訓內容,大數據要學哪些課程
java
數據來結構、自關系型資料庫、linux系統操作
hadoop離線分析、Storm實時計算、spark內存計算