Ⅰ 與大數據密切相關的技術是什麼技術

介紹新一代的BI分析平台——亦策觀數台,增強分析、NLP(支持中文自然語言)、數據管理等。觀數台是亦策軟體擁有自主知識產權的產品,亦策觀數台集合了亦策軟體在商業智能(BI)領域多年的經驗,精心為中國企業量身定製的本土化、敏捷型、可嵌入的商業智能(BI)平台。

其獨特的關聯引擎、增強智能等核心技術,是允許每位用戶深入全面洞悉數據的下一代可視化分析平台。

它將自助式BI的靈活性提升至一個新的層次,包括自助服務可視化、指導式分析應用和儀表盤、嵌入式分析和報告等。觀數台核心功能包括BI、報表、門戶管理、數據採集、移動端,可以免費體驗。

(1)大數據密切相關的技術擴展閱讀:

想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

Ⅱ 有哪些大學的哪些專業是與大數據有關的

一、開設了大數據的大學:

1、北京大學

大數據是一個新的專業,國內首次出現這個專業是在2016年的時候,當時新設這個專業的高校全國只有3所有,其中就有北京大學。

(2)大數據密切相關的技術擴展閱讀:

大數據專業主要課程

C程序設計、數據結構、資料庫原理與應用、計算機操作系統、計算機網路、Java語言程序設計、Python語言程序設計,大數據演算法、人工智慧、應用統計(統計學)、大數據機器學習、數據建模、大數據平台核心技術、大數據分析與處理,大數據管理、大數據實踐等課程。

數據(big data)

指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

Ⅲ 關於大數據的的相關技術

在大數據中,涉及到了很多技術,這些技術都是比較新穎的,比如說人工智慧、區塊鏈、圖靈測試等等,這些技術都是能夠幫助大數據解決很多問題。在這篇文章中我們就給大家介紹一下關於回歸分析、貪婪演算法、MapRece、數據挖掘的相關知識。
1.貪心演算法
貪心演算法是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,它所做出的是在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。由此可見,貪心演算法是十分實用的。
2.數據挖掘
數據挖掘是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。數據挖掘工作是一個十分重要的內容,在大數據和數據分析中廣泛實用。
3.回歸分析
回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。
4.MapRece
MapRece是一種編程模型,用於大規模數據集的並行運算。概念"映射"和"歸約",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。它極大地方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統上。 當前的軟體實現是指定一個映射函數,用來把一組鍵值對映射成一組新的鍵值對,指定並發的歸約函數,用來保證所有映射的鍵值對中的每一個共享相同的鍵組。這些內容就是大數據分析工作中經常使用的演算法。
在這篇文章中我們介紹了關於回歸分析、貪婪演算法、MapRece、數據挖掘的相關知識,相信大家通過閱讀這篇文章以後對這些技術有了一定的理解。希望這篇文章能夠更好地幫助大家。

Ⅳ 什麼是大數據技術

網路名詞 塗子沛著的圖書
巨量資料(big data),或稱大數據、海量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據的4V特點:Volume、Velocity、Variety、Veracity。「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用,形成的智力資源和知識服務能力。

Ⅳ 大數據平台的三個重要的技術部分不包括哪些

1.數據分析成為大數據技術的核心 數據分析在數據處理過程中占據十分重要的位置,隨著時代的發展,數據分析也會逐漸成為大數據技術的核心。大數據的價值體現在對大規模數據集合的智能處理方面,進而在大規模的數據中獲取有用的信息。要想逐步實現這個功能,就必須對數據進行分析和挖掘。而數據的採集、存儲、和管理都是數據分析步驟的基礎,通過進行數據分析得到的結果,將應用於大數據相關的各個領域。未來大數據技術的進一步發展,與數據分析技是密切相關的
2.廣泛採用實時性的數據處理方式 在現如今人們的生活中,人們獲取信息的速度較快。為了更好地滿足人們的需求,大數據處理系統的處理方式也需要不斷地與時俱進。目前大數據的處理系統採用的主要是批量化的處理方式,這種數據處理方式有一定的局限性,主要是用於數據報告的頻率不需要達到分鍾級別的場合,而對於要求比較高的場合,這種數據處理方式就達不到要求。傳統的數據倉庫系統、鏈路挖掘等應用對數據處理的時間往往以小時或者天為單位。這與大數據自身的發展有點不相適應。大數據突出強調數據的實時性,因而對數據處理也要體現出實時性。如在線個性化推薦、股票交易處理、實時路況信息等數據處理時間要求在分鍾甚至秒極。要求極高。在一些大數據的應用場合,人們需要及時對獲取的信息進行處理並進行適當的舍棄,否則很容易造成空間的不足。在未來的發展過程中,實時性的數據處理方式將會成為主流,不斷推動大數據技術的發展和進步。
3.基於雲的數據分析平台將更加完善 近幾年來,雲計算技術發展的越來越快,與此相應的應用范圍也越來越寬。雲計算的發展為大數據技術的發展提供了一定的數據處理平台和技術支持。雲計算為大數據提供了分布式的計算方法、可以彈性擴展、相對便宜的存儲空間和計算資源,這些都是大數據技術發展中十分重要的組成部分。此外,雲計算具有十分豐富的IT資源、分布較為廣泛,為大數據技術的發展提供了技術支持。隨著雲計算技術的不斷發展和完善,發展平台的日趨成熟,大數據技術自身將會得到快速提升,數據處理水平也會得到顯著提升。
4.開源軟體的發展將會成為推動大數據技術發展的新動力 開源軟體是在大數據技術發展的過程中不斷研發出來的。這些開源軟體對各個領域的發展、人們的日常生活具有十分重要的作用。開源軟體的發展可以適當的促進商業軟體的發展,以此作為推動力,從而更好地服務於應用程序開發工具、應用、服務等各個不同的領域。雖然現如今商業化的軟體也是發展十分迅速,但是二者之間並不會產生矛盾,可以優勢互補,從而共同進步。開源軟體自身在發展的同時,為大數據技術的發展貢獻力量。