『壹』 國內醫療大數據公司有哪些最好結合案例

大數據在醫療行業的應用可在以下幾個方面發揮積極作用:

(1)服務居民。居民健康指導服務系統,提供精準醫療、個性化健康保健指導,使居民能在醫院、社區及線上的服務保持連續性。例如,提供心血管、癌症、高血壓、糖尿病等慢性病干預、管理、健康預警及健康宣教(保健方案訂閱、推送);同時減少患者住院時間,減少急診量,提高家庭護理比例和門診醫生預約量。

5、疾病模式的分析

通過分析疾病的模式和趨勢,可以幫助醫療產品企業制定戰略性的研發投資決策,幫助其優化研發重點,優化配備資源。

新的商業模式

大數據分析可以給醫療服務行業帶來新的商業模式。

匯總患者的臨床記錄和醫療保險數據集

匯總患者的臨床記錄和醫療保險數據集,並進行高級分析,將提高醫療支付方、醫療服務提供方和醫葯企業的決策能力。比如,對醫葯企業來說,他們不僅可 以生產出具有更佳療效的葯品,而且能保證葯品適銷對路。臨床記錄和醫療保險數據集的市場剛剛開始發展,擴張的速度將取決於醫療保健行業完成EMR和循證醫 學發展的速度。

公眾健康

大數據的使用可以改善公眾健康監控。公共衛生部門可以通過覆蓋全國的患者電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測 和響應程序,快速進行響應。這將帶來很多好處,包括醫療索賠支出減少、傳染病感染率降低,衛生部門可以更快地檢測出新的傳染病和疫情。通過提供准確和及時 的公眾健康咨詢,將會大幅提高公眾健康風險意識,同時也將降低傳染病感染風險。所有的這些都將幫助人們創造更好的生活。

『貳』 大數據在醫療行業的應用面臨的挑戰有哪些方面

1、數據質量
目前醫療數據的來源主要為醫療機構(例如、醫學葯學實驗室、醫療康復中心等)和互聯網。採集的數據范 圍廣、維度高、類型種類繁多且不針對 特定的問題。
2、不確定性的度量問題
目前比較成熟且進入實用階段的大數 據模型多數都是面向葯廠和保險公司的。美國的醫療大數據應用中,面向醫生和患 者業務通常較難,很難找到合適的切入點。面向企業的業務相對容易,尤其是針對保 險公司和葯廠,而則相對難一些。由於大數據模型精度有限,在安全性要求極 高的和醫生中其實用價值非常有限,例如,一個95%准確度的模型對醫生來說可能仍然不夠精確,因為醫生在決策時是針對患者個體的,而不是基於統計意義的。
另外,統計學習模型的可解釋性也較差,往往只有統計學家和計算機科學家才能精確完整地解釋模型,而對於模型真正的使用者如醫生和政府官員等存在巨大的障礙。

『叄』 大數據在醫療行業的應用有哪些

大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。

『肆』 大數據應用潛力,醫療大數據的實踐又有哪些

現在的時代可以成為大數據時代。大數據時代的下的我們能更好地生活,與此同時,我們的生活方式也被大數據改變。數據基本上能跟任何行業進行互動,也可以說數據對每個領域來說都起到了推動性的作用,因為在數據驅動之下,各類領域就會根絕要求去改善自身的服務,提高產品的質量,這樣就能更好地滿足客戶的需求。大數據在醫療領域的應用也是很明顯。

雖然說大數據是一個數據的收集,對於個體還是不太具有針對性的。但是,大數據對我們的生活真的是起到了一個積極的作用。不過,即使醫療手段再先進,我們還是要保護好身體,不要生病。

『伍』 關於大數據應用有什麼例子

  • 大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。

  • 大數據應用案例之:醫療行業

  • Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

  • 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

  • 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

  • 大數據應用案例之:能源行業

  • 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。

  • 有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

  • 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。