人工智慧參考文獻舉例
① 求一篇關於人工智慧在游戲中的應用的論文,最好是關於分析某款游戲的,作為論文的參考!
買《游戲編程中的人工智慧技術》到卓越亞馬遜買,我買過一本,它後面有個參考文獻,內容不少,沒找到電子版,或者你去圖書館借借看~
不貴,一張魔獸點卡錢~有些書還是要買的~
ps:到網路文庫搜「Windows游戲編程大師技巧」裡面有一章介紹這方面的~
② 人工智慧在生活中應用的例子
1、虛擬個人助理
Siri,GoogleNow和Cortana都是各種渠道(iOS,Android和WindowsMobile)上的智能數字個人助理。
總歸,當你用你的聲響提出要求時,他們會協助你找到有用的信息;你能夠說「最近的我國飯館在哪裡?」,「今日我的日程安排是什麼?」,「提醒我八點打電話給傑里」,幫手會經過查找信息,轉播手機中的信息或發送指令給其他應用程序。
人工智慧在這些應用程序中十分重要,由於他們搜集有關懇求的信息並運用該信息更好地辨認您的言語並為您供給適合您偏好的結果。
微軟標明Cortana「不斷了解它的用戶」,而且終究會開展出猜測用戶需求的能力。虛擬個人助理處理來自各種來歷的許多數據以了解用戶,並更有效地協助他們組織和跟蹤他們的信息。
2、視頻游戲
事實上,自從第一次電子游戲以來,視頻游戲AI現已被運用了很長一段時間-人工智慧的一個實例,大多數人可能都很熟悉。
可是AI的復雜性和有效性在曩昔幾十年中呈指數級添加,導致視頻游戲人物了解您的行為,呼應刺激並以不行預知的方法做出反應。2014年的中心地球:魔多之影關於每個非玩家人物的個性特徵,他們對曩昔互動的回想以及他們的可變方針都特別有目共睹。
「孤島驚魂」和「使命呼喚」等第一人稱射擊游戲或許多運用人工智慧,敵人能夠剖析其環境,找到可能有利於其生存的物體或舉動;他們會點贊保護,查詢聲響,運用側翼演習,並與其他AI進行溝通,以添加取勝的時機。
就AI而言,視頻游戲有點簡略,但由於職業巨大的商場,每年都在投入許多精力和資金來完善這種類型的AI。
3、在線客服
現在,許多網站都提供用戶與客服在線聊天的窗口,但其實並不是每個網站都有一個真人提供實時服務。在很多情況下,和你對話的僅僅只是一個初級AI。大多聊天機器人無異於自動應答器,但是其中一些能夠從網站里學習知識,在用戶有需求時將其呈現在用戶面前。
最有趣也最困難的是,這些聊天機器人必須擅於理解自然語言。顯然,與人溝通的方式和與電腦溝通的方式截然不同。所以這項技術十分依賴自然語言處理(NLP)技術,一旦這些機器人能夠理解不同的語言表達方式中所包含的實際目的,那麼很大程度上就可以用於代替人工服務。
4、購買預測
如果京東、天貓和亞馬遜這樣的大型零售商能夠提前預見到客戶的需求,那麼收入一定有大幅度的增加。亞馬遜目前正在研究這樣一個的預期運輸項目:在你下單之前就將商品運到送貨車上,這樣當你下單的時候甚至可以在幾分鍾內收到商品。
毫無疑問這項技術需要人工智慧來參與,需要對每一位用戶的地址、購買偏好、願望清單等等數據進行深層次的分析之後才能夠得出可靠性較高的結果。
雖然這項技術尚未實現,不過也表現了一種增加銷量的思路,並且衍生了許多別的做法,包括送特定類型的優惠券、特殊的打折計劃、有針對性的廣告,在顧客住處附近的倉庫存放他們可能購買的產品。
這種人工智慧應用頗具爭議性,畢竟使用預測分析存在隱私違規的嫌疑,許多人對此頗感憂慮。
5、音樂和電影推薦服務
與其他人工智慧系統相比,這種服務比較簡單。但是,這項技術會大幅度提高生活品質的改善。如果你用過網易雲音樂這款產品,一定會驚嘆於私人FM和每日音樂推薦與你喜歡的歌曲的契合度。
從前,想要聽點好聽的新歌很難,要麼是從喜歡的歌手裡找,要麼是從朋友的歌單里去淘,但是往往未必有效。喜歡一個人的一首歌不代表喜歡這個人的所有歌,另外有的時候我們自己也不知道為什麼會喜歡一首歌、討厭一首歌。
而在有人工智慧的介入之後,這一問題就有了解決辦法。也許你自己不知道到底喜歡包含哪些元素的歌曲,但是人工智慧通過分析你喜歡的音樂可以找到其中的共性,並且可以從龐大的歌曲庫中篩選出來你所喜歡的部分,這比最資深的音樂人都要強大。
電影推薦也是相同的原理,對你過去喜歡的影片了解越多,就越了解你的偏好,從而推薦出你真正喜歡的電影。
(2)人工智慧參考文獻舉例擴展閱讀
人工智慧應用領域
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
值得一提的是,機器翻譯是人工智慧的重要分支和最先應用領域。不過就已有的機譯成就來看,機譯系統的譯文質量離終極目標仍相差甚遠;而機譯質量是機譯系統成敗的關鍵。
中國數學家、語言學家周海中教授曾在論文《機器翻譯五十年》中指出:要提高機譯的質量,首先要解決的是語言本身問題而不是程序設計問題;單靠若干程序來做機譯系統,肯定是無法提高機譯質量的。
另外在人類尚未明了大腦是如何進行語言的模糊識別和邏輯判斷的情況下,機譯要想達到「信、達、雅」的程度是不可能的。智能家居之後,人工智慧成為家電業的新風口,而長虹正成為將這一浪潮掀起的首個家電巨頭。
長虹發布兩款CHiQ智能電視新品,主打手機遙控器、帶走看、隨時看、分類看功能 。
③ 什麼是人工智慧,舉例說明其在企管理中的作用
人工智慧主要是基於互聯網大數據,也就是說,企業管理中的實用基本我們分為兩個部分,首先是對外:用戶管理,用戶行為習慣和喜好分析等等,未來的營銷肯定是精準營銷,他會精準到每一個客戶的需求...
其次是內部:HR工作,我們員工也是互聯網使用者,我們通過人工智慧,可以搜集到員工的行為,情緒還有他們的發招需求,針對這些,人工智慧可以提出一個完美的解決方案,比如我們應該怎麼做才能激發員工的動力,提高創意和運營效益...
④ 弱人工智慧的舉例,不少於十個例子
語音來識別,圖像識別,圖像審源核,圖像效果增強,文字識別,人臉識別,人體分析,語音合成,文本審核,智能寫作,等等
具體例子(分別與上面對應):語音輸入,網路查圖片,社交網站發圖片審核是否有本性或者敏感的內容,黑白圖像上色,錄入手寫文字,驗證是不是同一個人,人像摳圖,文字播報或者是導航地圖的語音,信息篩查,智能生成春聯,等等
還有比如:智能音箱,火車站檢測過往的人是否發熱(不用一個一個儀器掃描),無人駕駛,阿爾法狗下圍棋,刷臉支付,等等
如果我沒有解決你的問題,請繼續追問
求點贊,謝謝謝謝你了
⑤ 求一篇 人工智慧行為識別的論文綜述:
那你在網上找找(人工智慧與機器人研究)吧~~看看別人的是怎麼寫的~
⑥ 人工智慧應用在哪些方面呢能舉幾個典型的例子嗎
1.智能機器人 智能機器人是一種具有感知能力、思維能力和行為能力的新一代機器人。這種機器人能夠主動適應外界環境變化,並能夠通過學習豐富自己的知識,提高自己的工作能力。目前,已研製出了肢體和行為功能靈活,能根據思維機構的命令完成許多復雜操作,能回答各種復雜問題的機器人。
2.智能網路 智能網路方面的兩個重要研究內容分別是智能搜索引擎和智能網格。智能搜索引擎是一種能夠為用戶提供相關度排序、角色登記、興趣識別、內容的語義理解、智能化信息過濾和推送等人性化服務的搜索引擎。智能網格是一種與物理結構和物理分布無關的網路環境,它能夠實現各種資源的充分共享,能夠為不同用戶提供個性化的網路服務。可以形象地把智能網格比喻為一個超級大腦,其中的各種計算資源、存儲資源、通信資源、軟體資源、信息資源、知識資源等都像大腦的神經元細胞一樣能夠相互作用、傳導和傳遞,實現資源的共享、融合和新生。
3.智能檢索 智能檢索是指利用人工智慧的方法從大量信息中盡快找到所需要的信息或知識。隨著科學技術的迅速發展和信息手段的快速提升,在各種資料庫,尤其是網際網路上存放著大量的、甚至是海量的信息或知識。面對這種信息海洋,如果還用傳統的人工方式進行檢索,已經很不現實。因此,迫切需要相應的智能檢索技術和智能檢索系統來幫助人們快速、准確、有效地完成檢索工作。
4.智能游戲 游戲是一種娛樂活動。游戲技術與計算機技術結合產生了「計算機游戲」或「視頻游戲」,與網路技術結合產生了「網路游戲」,與人工智慧技術結合產生了智能游戲
⑦ 人工智慧有什麼好的參考書么
Peter Norvig 的《AI, Modern Approach 2nd》(無爭議的領域經典)
Bishop, 《Pattern Recognition and Machine Learning》. 沒有影印的,但是網上能下到。經典中的經典。Pattern Classification 和這本書是兩本必讀之書。《Pattern Recognition and Machine Learning》是很新(07年),深入淺出,手不釋卷。
推薦兩本有意思的書,
一本是《Simple Heuristics that Makes Us Smart》
另一本是《Bounded Rationality: The Adaptive Toolbox》
---------------------------------------------------------------------
<從CSDN上轉載的>
機器學習與人工智慧學習資源導引
我經常在 TopLanguage 討論組上推薦一些書籍,也經常問裡面的牛人們搜羅一些有關的資料,人工智慧、機器學習、自然語言處理、知識發現(特別地,數據挖掘)、信息檢索這些無疑是 CS 領域最好玩的分支了(也是互相緊密聯系的),這里將最近有關機器學習和人工智慧相關的一些學習資源歸一個類:
首先是兩個非常棒的 Wikipedia 條目,我也算是 wikipedia 的重度用戶了,學習一門東西的時候常常發現是始於 wikipedia 中間經過若干次 google ,然後止於某一本或幾本著作。
第一個是「人工智慧的歷史」(History of Artificial Intelligence),我在討論組上寫道:
而今天看到的這篇文章是我在 wikipedia 瀏覽至今覺得最好的。文章名為《人工智慧的歷史》,順著 AI 發展時間線娓娓道來,中間穿插無數牛人故事,且一波三折大氣磅礴,可謂"事實比想像更令人驚訝"。人工智慧始於哲學思辨,中間經歷了一個沒有心理學(尤其是認知神經科學的)的幫助的階段,僅通過牛人對人類思維的外在表現的歸納、內省,以及數學工具進行探索,其間最令人激動的是 Herbert Simon (決策理論之父,諾獎,跨領域牛人)寫的一個自動證明機,證明了羅素的數學原理中的二十幾個定理,其中有一個定理比原書中的還要優雅,Simon 的程序用的是啟發式搜索,因為公理系統中的證明可以簡化為從條件到結論的樹狀搜索(但由於組合爆炸,所以必須使用啟發式剪枝)。後來 Simon 又寫了 GPS (General Problem Solver),據說能解決一些能良好形式化的問題,如漢諾塔。但說到底 Simon 的研究畢竟只觸及了人類思維的一個很小很小的方面 —— Formal Logic,甚至更狹義一點 Dective Reasoning (即不包含 Inctive Reasoning , Transctive Reasoning (俗稱 analogic thinking)。還有諸多比如 Common Sense、Vision、尤其是最為復雜的 Language 、Consciousness 都還謎團未解。還有一個比較有趣的就是有人認為 AI 問題必須要以一個物理的 Body 為支撐,一個能夠感受這個世界的物理規則的身體本身就是一個強大的信息來源,基於這個信息來源,人類能夠自身與時俱進地總結所謂的 Common-Sense Knowledge (這個就是所謂的 Emboddied Mind 理論。 ),否則像一些老兄直接手動構建 Common-Sense Knowledge Base ,就很傻很天真了,須知人根據感知系統從自然界獲取知識是一個動態的自動更新的系統,而手動構建常識庫則無異於古老的 Expert System 的做法。當然,以上只總結了很小一部分我個人覺得比較有趣或新穎的,每個人看到的有趣的地方不一樣,比如裡面相當詳細地介紹了神經網路理論的興衰。所以我強烈建議你看自己一遍,別忘了裡面鏈接到其他地方的鏈接。
順便一說,徐宥同學打算找時間把這個條目翻譯出來,這是一個相當長的條目,看不動 E 文的等著看翻譯吧:)
第二個則是「人工智慧」(Artificial Intelligence)。當然,還有機器學習等等。從這些條目出發能夠找到許多非常有用和靠譜的深入參考資料。
然後是一些書籍
書籍:
1. 《Programming Collective Intelligence》,近年出的入門好書,培養興趣是最重要的一環,一上來看大部頭很容易被嚇走的:P
2. Peter Norvig 的《AI, Modern Approach 2nd》(無爭議的領域經典)。
3. 《The Elements of Statistical Learning》,數學性比較強,可以做參考了。
4. 《Foundations of Statistical Natural Language Processing》,自然語言處理領域公認經典。
5. 《Data Mining, Concepts and Techniques》,華裔科學家寫的書,相當深入淺出。
6. 《Managing Gigabytes》,信息檢索好書。
7. 《Information Theory:Inference and Learning Algorithms》,參考書吧,比較深。
相關數學基礎(參考書,不適合拿來通讀):
1. 線性代數:這個參考書就不列了,很多。
2. 矩陣數學:《矩陣分析》,Roger Horn。矩陣分析領域無爭議的經典。
3. 概率論與統計:《概率論及其應用》,威廉·費勒。也是極牛的書,可數學味道太重,不適合做機器學習的。於是討論組里的 Du Lei 同學推薦了《All Of Statistics》並說到
機器學習這個方向,統計學也一樣非常重要。推薦All of statistics,這是CMU的一本很簡潔的教科書,注重概念,簡化計算,簡化與Machine Learning無關的概念和統計內容,可以說是很好的快速入門材料。
4. 最優化方法:《Nonlinear Programming, 2nd》非線性規劃的參考書。《Convex Optimization》凸優化的參考書。此外還有一些書可以參考 wikipedia 上的最優化方法條目。要深入理解機器學習方法的技術細節很多時候(如SVM)需要最優化方法作為鋪墊。
王寧同學推薦了好幾本書:
《Machine Learning, Tom Michell》, 1997.
老書,牛人。現在看來內容並不算深,很多章節有點到為止的感覺,但是很適合新手(當然,不能"新"到連演算法和概率都不知道)入門。比如決策樹部分就很精彩,並且這幾年沒有特別大的進展,所以並不過時。另外,這本書算是對97年前數十年機器學習工作的大綜述,參考文獻列表極有價值。國內有翻譯和影印版,不知道絕版否。
《Modern Information Retrieval, Ricardo Baeza-Yates et al》. 1999
老書,牛人。貌似第一本完整講述IR的書。可惜IR這些年進展迅猛,這本書略有些過時了。翻翻做參考還是不錯的。另外,Ricardo同學現在是Yahoo Research for Europe and Latin Ameria的頭頭。
《Pattern Classification (2ed)》, Richard O. Duda, Peter E. Hart, David G. Stork
大約也是01年左右的大塊頭,有影印版,彩色。沒讀完,但如果想深入學習ML和IR,前三章(介紹,貝葉斯學習,線性分類器)必修。
還有些經典與我只有一面之緣,沒有資格評價。另外還有兩本小冊子,論文集性質的,倒是講到了了不少前沿和細節,諸如索引如何壓縮之類。可惜忘了名字,又被我壓在箱底,下次搬家前怕是難見天日了。
(呵呵,想起來一本:《Mining the Web - Discovering Knowledge from Hypertext Data》 )
說一本名氣很大的書:《Data Mining: Practical Machine Learning Tools and Techniques》。Weka 的作者寫的。可惜內容一般。理論部分太單薄,而實踐部分也很脫離實際。DM的入門書已經不少,這一本應該可以不看了。如果要學習了解 Weka ,看文檔就好。第二版已經出了,沒讀過,不清楚。
信息檢索方面,Du Lei 同學再次推薦:
信息檢索方面的書現在建議看Stanford的那本《Introction to Information Retrieval》,這書剛剛正式出版,內容當然up to date。另外信息檢索第一大牛Croft老爺也正在寫教科書,應該很快就要面世了。據說是非常pratical的一本書。
對信息檢索有興趣的同學,強烈推薦翟成祥博士在北大的暑期學校課程,這里有全slides和閱讀材料:http://net.pku.e.cn/~course/cs410/schele.html
maximzhao 同學推薦了一本機器學習:
加一本書:Bishop, 《Pattern Recognition and Machine Learning》. 沒有影印的,但是網上能下到。經典中的經典。Pattern Classification 和這本書是兩本必讀之書。《Pattern Recognition and Machine Learning》是很新(07年),深入淺出,手不釋卷。
最後,關於人工智慧方面(特別地,決策與判斷),再推薦兩本有意思的書,
一本是《Simple Heuristics that Makes Us Smart》
另一本是《Bounded Rationality: The Adaptive Toolbox》
不同於計算機學界所採用的統計機器學習方法,這兩本書更多地著眼於人類實際上所採用的認知方式,以下是我在討論組上寫的簡介:
這兩本都是德國ABC研究小組(一個由計算機科學家、認知科學家、神經科學家、經濟學家、數學家、統計學家等組成的跨學科研究團體)集體寫的,都是引起領域內廣泛關注的書,尤其是前一本,後一本則是對 Herbert Simon (決策科學之父,諾獎獲得者)提出的人類理性模型的擴充研究),可以說是把什麼是真正的人類智能這個問題提上了檯面。核心思想是,我們的大腦根本不能做大量的統計計算,使用fancy的數學手法去解釋和預測這個世界,而是通過簡單而魯棒的啟發法來面對不確定的世界(比如第一本書中提到的兩個後來非常著名的啟發法:再認啟發法(cognition heuristics)和選擇最佳(Take the Best)。當然,這兩本書並沒有排斥統計方法就是了,數據量大的時候統計優勢就出來了,而數據量小的時候統計方法就變得非常糟糕;人類簡單的啟發法則充分利用生態環境中的規律性(regularities),都做到計算復雜性小且魯棒。
關於第二本書的簡介:
1. 誰是 Herbert Simon
2. 什麼是 Bounded Rationality
3. 這本書講啥的:
我一直覺得人類的決策與判斷是一個非常迷人的問題。這本書簡單地說可以看作是《決策與判斷》的更全面更理論的版本。系統且理論化地介紹人類決策與判斷過程中的各種啟發式方法(heuristics)及其利弊(為什麼他們是最優化方法在信息不足情況下的快捷且魯棒的逼近,以及為什麼在一些情況下會帶來糟糕的後果等,比如學過機器學習的都知道樸素貝葉斯方法在許多情況下往往並不比貝葉斯網路效果差,而且還速度快;比如多項式插值的維數越高越容易 overfit,而基於低階多項式的分段樣條插值卻被證明是一個非常魯棒的方案)。
在此提一個書中提到的例子,非常有意思:兩個團隊被派去設計一個能夠在場上接住拋過來的棒球的機器人。第一組做了詳細的數學分析,建立了一個相當復雜的拋物線近似模型(因為還要考慮空氣阻力之類的原因,所以並非嚴格拋物線),用於計算球的落點,以便正確地接到球。顯然這個方案耗資巨大,而且實際運算也需要時間,大家都知道生物的神經網路中生物電流傳輸只有百米每秒之內,所以 computational complexity 對於生物來說是個寶貴資源,所以這個方案雖然可行,但不夠好。第二組則采訪了真正的運動員,聽取他們總結自己到底是如何接球的感受,然後他們做了這樣一個機器人:這個機器人在球拋出的一開始一半路程啥也不做,等到比較近了才開始跑動,並在跑動中一直保持眼睛於球之間的視角不變,後者就保證了機器人的跑動路線一定會和球的軌跡有交點;整個過程中這個機器人只做非常粗糙的軌跡估算。體會一下你接球的時候是不是眼睛一直都盯著球,然後根據視線角度來調整跑動方向?實際上人類就是這么乾的,這就是 heuristics 的力量。
相對於偏向於心理學以及科普的《決策與判斷》來說,這本書的理論性更強,引用文獻也很多而經典,而且與人工智慧和機器學習都有交叉,裡面也有不少數學內容,全書由十幾個章節構成,每個章節都是由不同的作者寫的,類似於 paper 一樣的,很嚴謹,也沒啥廢話,跟《Psychology of Problem Solving》類似。比較適合 geeks 閱讀哈。
另外,對理論的技術細節看不下去的也建議看看《決策與判斷》這類書(以及像《別做正常的傻瓜》這樣的傻瓜科普讀本),對自己在生活中做決策有莫大的好處。人類決策與判斷中使用了很多的 heuristics ,很不幸的是,其中許多都是在適應幾十萬年前的社會環境中建立起來的,並不適合於現代社會,所以了解這些思維中的缺點、盲點,對自己成為一個良好的決策者有很大的好處,而且這本身也是一個非常有趣的領域。
(完)