大數據在反恐
『壹』 什麼是大數據反恐
「5.22」新疆暴恐案(2014年5月22日)引發市場高度關注,國家反恐怖工作領導小組日前決定,以新疆為主戰場,開展為期一年的嚴厲打擊暴恐活動專項行動,表明反恐活動或將常態化。業內預計,大數據作為信息綜合分析的重要推手,在解決資本市場內幕交易方面效果漸顯,或在反恐中再次成為分析利器。值得注意的是,2014年3月1日發生的昆明暴恐事件,通過對火車站內視頻監控系統的數據分析,為案件告破起到重要作用。目前國際上利用大數據技術進行反恐已成趨勢,而國內信息採集的逐步完善,也將提升大數據的反恐功能。機構預計,政策扶持和下游需求增長,大數據行業迎來年均逾100%的增長率,2016年市場規模達百億元規模。從事大數據分析、存儲和解決方案相關公司,均有望進入市場擴容期。
『貳』 深度解析大數據在公安領域的應用
深度解析大數據在公安領域的應用
近一兩年,大數據開始在公安等行業領域得到普及應用,除了行業自身的特殊要求外,大數據也帶動了相關行業的需求發展。未來,基於大數據的行業應用會變得更加深入,更多的相關廠商也會涉及其中,大數據在公安領域的商業模式架構逐漸清晰起來。
在安防的細分領域中,大數據在公安及智能交通探索應用得比較早,相關的解決方案和技術也比較成熟,在廣西等地也已經有相關的項目落地,大數據應用系統已經上線運營,取得了預期的效果。
項目應用前景看好
以相關的案例來講,在廣西公安廳投入使用的大數據系統中,整個項目是以自治區的總數據為出發點,對每天在所有卡口過道產生的上千萬條數據,每年大概三十億條的數據進行分布式存儲和快速檢索。在此基礎上,後續可以給公安用戶提供進一步的解決方案和增值服務,比如已經推出的卡口過車大數據、視頻圖像大數據和公安情報大數據三方面的解決方案。這些方案提供多種功能的查詢,以及基於測控的分析和基站行業的服務,目的就是讓公安能快速科學地偵破案件。
在智能交通領域,目前主要應用於車輛的疏導,比如基於不同道路、路口車流量的統計(時、日、月統計等),根據這些統計可以分析不同時段某條道路實時的車流密度、發展方向和趨勢等。這些項目的應用已經在很多大城市落地,比如平時大家在公交上看到的移動電視里播放的上下班高峰路段實時畫面,就是基於大數據的技術分析所得。從應用上看,用戶切實感到便捷好用,所以市場潛力很大,未來的應用會更加廣泛。
大數據應用存在的難題
大數據本身是針對數據的存儲、檢索、關聯、推導等有價值的挖掘,這些數據本身來說是通用的。但在安防領域,哪些數據是有用的,哪些是我們需要關心和提取的,這是目前在摸索的問題。也就是說,當前的困難在於如何讓技術熱點和相關業務進行結合,以提取更有價值的數據。
從技術上分析,有兩個技術難點:
第一個難點是如何從非結構化的數據中提取結構化的數據出來。所謂非結構化數據是指在視頻裡面進行特徵的提取,這些可能是人類不能理解和不能處理的;結構化數據則是人可以理解和處理的,比如在視頻里有幾個活動目標、是人還是車。如果是人,身上穿的是什麼樣的衣服;如果是車,車牌號是多少、什麼樣的品牌型號、顏色、行進速度、方向等數據,這些都是可以轉化為結構化數據為人所用。目前,安防的數據很多涉及到視頻數據,而視頻數據本身是不能夠被結構化的數據,也就不能被計算機直接所處理。所以未來擺在技術人員面前的課題是如何把視頻數據轉換成計算機能夠處理的結構化或者半結構化數據。
第二個難點是尋找這些數據之間的關聯和價值。數據是有關聯沒關聯之分的,我們只能通過工具來找。所有這些存儲的特徵數據,包括公安行業、平安城市中每天產生的海量視頻數據,可以為很多案件的偵查提供有價值的線索。現在技術需要攻克的難題就是能不能把這些數據通過相應的工具模塊,通過大數據技術把原來被忽視的數據信息關聯起來,找到或提取這些數據之間的相關性,為案件的偵破和方案決策提供科學的數據依據。
公安數據流動的單向性
公安行業每天獲取的數據數以千萬,如何確保這些數據信息的安全成為行業共同關注的熱點。從傳統意義上講,數據產生之後,首先要確保數據本身的安全,目前行業內有非常成熟的技術和解決方案。在海量數據面前,如果你對數據不了解,就算把這些數據擺在面前,你也很難去提取有用的數據,但這並不能作為行業忽視其重要性的借口。因為對安防廠商而言,很多有價值的數據是需要提供保護的,也就是對數據應用模式採取高規格的保護措施,因為這些數據一旦被不法分子挖掘並關聯起來,可能整個地區的安全漏洞就會被利用。
現在,公安的數據一般在區域網內運行,並有相關的保護措施來提供安全保障。如會把數據分成不同的網路和不同的層次,讓數據在不同的網路安全系統之間,從低安全性網路向高安全性網路實行單向流動,最後在公安的核心網路里匯集所有的數據(這個安全等級是最高的,通過安全邊界、物理隔離來保護)。同時在外圍的視頻網,主要以視頻數據為主,輔以視頻相關的業務,這些數據只有進入公安網後才與其他的數據發生關聯,才能發掘出一些有價值的數據。比如辦案民警在視頻網路上,可以獲取犯罪嫌疑人的照片,但這個人是誰,他的信息是什麼,只有進入公安網以後才能獲取,才能將相關信息匹配關聯起來,然後通過其他資料庫的關聯,進一步挖掘出他在哪個網吧出現過,在哪個酒店居住過……以上信息都可以挖掘出來,但這種挖掘只能在高安全性網路中進行,這種信息流動都是單向的。
未來的商業模式
從傳統的安防業務來講,還是以公安客戶投資建設系統為主,廠商提供產品和集成的解決方案,最終由集成商來做落地實施,最後交付給客戶使用並進行相應的維護。同時,未來行業對大數據中數據的獲取、存儲、分析、處理會變得更加的專業,用戶本身在處理和應用時可能會遇到各種困難,那麼針對這類問題可能會有一些小型的服務公司出現,給終端用戶提供各種各樣專業的數據服務。比如專業的視頻提取會有專業的公司切入,用專業的演算法工具幫助你把視頻裡面的數據提取出來,或者有那些專業的通訊廠商對數據進行挖掘和處理,包括提供一些工具和服務的模式(未來會更傾向於服務的模式)。但限於公安行業的特點,這些公共服務在公安行業目前還比較難做,不過未來也可以由一些廠家對整個應用系統進行構建,以運營服務收費的方式與公安客戶或者政府機構進行合作。
對於大型、特別大型的項目,比如涉及到一個城市、一個省乃至全國范圍的項目,一般來說可能會找專業的IT廠商來做,特別是互聯網公司(現在也有牽涉其中),他們更多是以技術提供商的角色參與,安防廠商側重點放在業務上。這樣大家分工比較明確,因為即使是技術比較領先的行業廠商,它也很難或者沒有必要投大量的研發在大數據基礎的研發上,而是應該將重點放在大數據的基礎應用或業務解決方案上,然後底層的基礎架構由IT廠商來分擔完成。彼此互利共贏,持續發展。
以上是小編為大家分享的關於 深度解析大數據在公安領域的應用的相關內容,更多信息可以關注環球青藤分享更多干貨
『叄』 大數據時代中國國家安全面臨哪些挑戰
當前,我們的國家安全面臨著多方面威脅和多層次危險,形勢十分嚴峻。從近期新聞報道中可以看到,一些境外黑手覬覦我安全利益從未停止,個別公民自覺不自覺淪為他們的「帶路黨」甚至是幫凶:軍事、科技領域刺探情報的有,意識形態領域代言的也有,甚至在向經濟建設等領域擴散。這其中的許多案例都表明,那些被拉下水的,無非就是中了金錢美色「必殺技」。而這些人或貪婪或無知做出背叛祖國的勾當,損害的正是你我的利益。因此,每位公民都有責任和義務維護國家安全。
其實,普通公民與國家安全關系並不遙遠,可做的工作有很多。比如,可以自覺提高維護安全意識,積極舉報危險來源,主動提供線索和證據等,還可以協助國家有關部門做好安全工作,力所能及參加到群防群治活動中等。特別在反恐斗爭、網路安全和文化安全方面,我們只要掌握了一定的安全防範知識和斗爭抵制方法,更是可以積極參與主動作為,如此就能形成全民維護國家安全的整體力量。當然,前提是要潔身自好,不為利益誘惑,不給敵對分子以可乘之機。
以法律形式調整國家安全領域的社會關系,是世界各國的通行做法。相比而言,雖然西方國家的相關法律法規比較完善,但只有中國的國家安全法突出了以「人民安全」為宗旨的總體安全觀。法律規定,中國的國家安全以軍事、文化、社會安全為保障,以促進國際安全為依託,維護各領域國家安全,構建國家安全體系,走中國特色國家安全道路。可以看到,我們的國家安全首要的是保護人民的根本利益,我們維護國家安全走的是「一切為了人民,一切依靠人民」的路子。也只有維護了國家安全,確保國家利益不受損害,我們才能獲得國家主權帶給我們的尊嚴,才能享受安全發展創造的利益。
安不忘危,存不忘亡,治不忘亂。和平與發展作為時代主題並未改變,但捍衛國家利益的斗爭一刻也不曾停止。設立全民國家安全教育日,就是讓我們時刻警醒。只要人人能夠遵守法律、敢於斗爭,自覺維護國家安全,中華民族駛向偉大復興的航船就有了堅固鐵甲。
『肆』 大數據在2020年疫情下是不是起到了很大的作用
新冠疫情下大數據技術確實起到了至關重要的作用,就像支付寶上面的實時省份病例顯示,醫療中的實時大盤。每個地方的健康碼識別,都會用到大數據技術。如果對大數據又興趣,可以去黑馬看看學習視頻,基礎班是免費學習的。我的回答不知你是否滿意?
『伍』 大數據在軍事領域有哪些應用
在軍事上,用小數據時代的理念和技術,很難與大數據時代的思維和技能相對抗。面對大數據時代的軍事機遇和挑戰,要麼主動進擊,要麼被動跟進,難以置之度 外。其間的取捨與成敗,首先有賴於思維變革,其要求全體軍事人員尤其是指揮員,更加具備基於體系作戰的系統思維、基於數據模型的精確思維及基於對戰爭進行 科學預設的前瞻思維。
大數據創新了軍事管理方法,且這種創新是全方位的--除了可以提高包含閱兵在內的軍事訓練水平,還可以:
1.提高軍事管理水平
管理大師戴明與德魯克都曾提出:「不會量化就無法管理」。數據的根本價值之一,就是可作為管理依據。大數據應用的特點是強調分析與某事物相關的總體數據, 而不是抽取少量的數據樣本;大數據關注事物的混雜性,而不追求事物的精確性;大數據注重事物的相關關系,而不探求其間的因果關系。
將大數據應用於軍事領域,意味著軍事管理將更加剛性,基本不受人為因素的影響,且更加自動化。所以說,大數據強軍的內涵,本質上是軍事管理科學化程度的提 高,即與小數據比起來,由於有了大數據,軍事管理活動量化程度更高了,工具更加先進了,邊界更加寬廣了,管理質量、效率會隨之更高。
2.豐富軍事科研方法
通常人們研究戰爭機理、找尋戰爭規律的方法有三種,又稱為三大範式:實驗科學範式,在戰前通過反復的實兵對抗演習來論證和改進作戰方案;理論科學範式,採用數學公式描述交戰的過程,如經典的蘭徹斯特方程;計算科學範式,基於計算機開發出模擬系統來模擬不同作戰單元之間的交戰場景。
但是,上述研究範式只能使人們感知交戰的過程和結果,並未有效提高對海量數據的管理、存儲和分析能力。
以大數據為核心技術的數據挖掘模式被稱為第四戰爭研究範式。人 們可以有效利用大數據,探尋信息化戰爭的內在規律,而不是被淹沒在海量數據中一籌莫展。大數據研究範式由軟體處理各種感測器或模擬實驗產生的大量數據,將 得到的信息或知識存儲在計算機中,基於數據而非已有規則編寫程序,再利用包括量子計算機在內的各種高性能計算機對海量信息進行挖掘,由計算機智能化尋找隱 藏在數據中的關聯,從而發現未知規律,捕獲有價值的情報信息。
例如,在第一次海灣戰爭前,美軍就利用改進的「兵棋」,對戰爭進程、結果及傷亡人數進行了推演,推演結果與戰爭的實際結果基本一致。而在伊拉克戰爭前,美 軍利用計算機兵棋系統進行演習,推演「打擊伊拉克」作戰預案。隨後美軍現實中進攻伊拉克並取得勝利的行動,也和兵棋推演的結果幾乎完全一致。
作戰模擬早已經從人工模式轉變為計算機模式,再加上大數據,戰前的模擬推演,從武器使用、戰爭打法到指揮手段,都可以清晰地顯現,是非常好的戰時決策依據。一旦發現作戰計劃有問題,可以及時調整,以確保實戰傷亡最小並取得勝利。
3.加速型武器裝備面世
大數據在武器裝備上的廣泛應用,意味著武器裝備建設將從重視研發信息系統到重視數據處理與應用的轉變,從注重信息系統的互聯互通到注重信息系統的透明性互 操作的轉變。當前武器裝備的信息化程度越來越高,裝備體系內各個節點之間的信息共享也越來越方便、可靠,但由此也帶來了一些突出問題,如原始信息規模過 大、價值不夠高、直接提取所需信息的難度增加等,從而使得武器裝備體系在信息獲取效率上大打折扣。在這種背景下產生的大數據為解決上述問題提供了有效方 法。
需要說明的是:大數據應用不僅意味著人們要以創新方式使用海量數據,還意味著人們要採用人工智慧技術來處理自然文本和進行知識表述,以替代目前依賴專家和技術人員昂貴而又耗時的信息處理方式。
大數據與人工智慧是一而二、二而一的關系。受益於大數據技術,武器裝備體系將從戰場上的信息使用者升級為高度智能化和自主化的系統。其具體流程為:經 過智能處理後的高價值信息進入戰場網路鏈路後,與戰場網路融為一體的武器裝備體系能實時自動感知面臨的有關威脅,各裝備節點自動感知包括我情和敵情在內的 戰場態勢,在作戰人員的有限參與下高度自主地分解作戰任務,確定作戰目標和行動方案,經過適當的審批流程後執行相關的作戰行動。
在這方面走在前列的仍然是美軍。美軍大數據研究的第一個重要目標是通過大數據創建真正能自主決策、自主行動的無人系統。這一點已在無人機領域實現。美軍希 望無人機可以完全擺脫人的控制而實現自主行動。美軍2013年試飛的X-47B就是這一系統的代表,它已經可以在完全無人干預的情況下自動在航母上完成起 降並執行作戰任務。
4.提升情報分析能力
19世紀初,軍事戰略家克勞塞維茨以人的認知局限為由,提出了「戰爭迷霧」概念。顯然,「戰爭迷霧」即「數據迷霧」。信息戰首先得消除「戰爭迷霧」。信息 戰是體系對體系的戰爭,而這一體系是一個超級復雜的巨大系統,僅諸軍兵種龐雜的武器裝備和作戰環境數據,就足以大到使普通的信息處理能力捉襟見肘;而敵我 對抗的復雜化,更是讓數據量呈爆炸式增長,從而帶來比傳統戰爭更多的「數據迷霧」。可以說,信息化戰爭的機制深藏在「數據迷霧」中。
消除「戰爭迷霧」會提高指揮員的情報分析與軍情預測能力。過去,由於可以掌握的數據不足,戰爭的不確定性很高,指揮員很容易陷在「戰爭迷霧」之中。而大數據最重要的價值之一是預測,即把數據演算法運用到海量的數據上來預測事情發生的可能性。
具體而言,未來完全可能依託大數據分析處理技術和建構模型,通過數據挖掘模式,從海量數據中挖掘出有價值的信息,及時准確掌握敵方的戰略企圖、作戰規律和 兵力配置,真正做到「知己知彼」,使戰場變得清晰透明,從而撥開「戰爭迷霧」,達成運籌於帷幄之中、決勝於千里之外的作戰目的。
對此趨勢,很多國家及其軍隊都極為看重。例如,美軍明確提出,要通過大數據將其情報分析能力提高100倍以上。如果這一目標實現,那麼在這一領域其他國家 與美軍的差距,將難以用簡單的「代差」來描述。美軍通過多年的發展,已擁有全球最先進的情報偵察系統,因為對海量情報數據的分析,曾是美軍情報偵察能力的 瓶頸,而大數據正好能夠幫助美軍突破這一瓶頸。
大數據時代,往往不要求准確知道每一個精確的細節,只需了解事物的概略全貌即可。通過相關數據信息的大量積累,而不是對某個具體數據的精確分析,大數據技 術可以為我們提煉出事物運行的規律,並判斷其發展趨勢。例如,2011年美軍擊斃本·拉登的「海神之矛」行動,就有賴上千名數據分析員長達10年數據積累 的支撐。換言之,是大數據抓住了本·拉登。
5.引領指揮決策方式變革
管理的核心是決策。大數據帶來的重要變革之一,是決策的思維、模式和方法的變革。建立在小數據時代基於經驗的決策,將讓位於大數據時代基於全樣本數據的決策。
決策是進行數據分析、行動方案設計並最終選擇行動方案的過程。軍事決策建立在對敵情的正確分析預測之上,其目的是通過合理分配兵力兵器,優選打擊目標,設計完成任務的最佳行動方法與步驟。
以往的戰爭,做出作戰決策時缺少足夠數據支持,甚至數據本身的真實性、准確性也難以保證。目前信息化條件下的戰爭,各種條件都變成了數據,這就要求指揮人 員必須掌握分析海量數據的工具和能力。以往,指揮人員更多的是依靠經驗進行相對概略或粗放式決策。大數據的出現必將要求指揮人員以全新的數據思維來進行指 揮決策。這種決策將有幾個特點:
一是准確。只要提供的數據量足夠龐大真實,通過數據挖掘模式,就可以較為准確地把握敵方指揮員的思維規律,預測對手的作戰行動,掌控戰場態勢的發展變化等。
二是迅速。大數據相關技術所提供的高速計算能力有助於指揮員更加迅速地設計行動方案。
三是自動化。針對特定的作戰對手和作戰環境,大數據系統可以自動對己方成千上萬、功能互補的作戰單 元或平台進行模塊化編組,從而實現整體作戰能力的最優化;面對眾多性質不同、防護力不同且威脅度各異的打擊目標,大數據系統可以自動對有限數量、有限強度 和有限精度的火力進行分配,以收獲最大作戰效益。
在大數據時代的戰爭中,軍事專家、技術專家的光芒會因為統計學家、數據分析家的參與而變暗,因為後者不受舊觀念的影響,能夠聆聽數據發出的「聲音」。
總之,基於數據的定量決策將和基於經驗的定性決策同樣重要,基於經驗的決策將很大程度上讓位給全樣本決策,基於大數據的決策手段將從輔助決策的次要地位上升到支撐決策的重要地位。
對此,美軍的認識是最到位的。美軍發布的《2013-2017年國防部科學技術投資優先項目》就將「從數據到決策」項目排在了第一位,凸顯了大數據對其指揮決策方式的巨大影響。
6.優化作戰指揮流程
網路日益普及的情況下,信息的流通與共享已不是難題,人們開始關注對信息的認識,及將信息轉化為知識的能力。
與之相適應,軍事信息技術也從關注「T」(Technology)的階段,向關注「I」(Information)的階段轉變;從建設指揮自動化系統 (C4ISR),即指揮、控制、通信、計算機、情報及監視與偵察等信息系統,整體管理「戰場信息的獲取、傳遞、處理和分發」的全信息流程;發展至重視大數 據處理應用,綜合集成數據採集、處理平台和分析系統,統一優化管理「戰場數據採集、傳遞、分析和應用」的全數據流程。即通過對海量數據進行開發處理,大幅 度提高從中提取高價值情報的能力,從而實現對戰場綜合態勢的實時感知、同步認知,進一步壓縮「包以德循環」(OODA Loop),即觀察-調整-決策-行動的指揮周期,縮短「知謀定行」時間,提高快速反應能力。
隨著數據挖掘技術、大規模並行演算法及人工智慧技術的不斷完善並廣泛應用在軍事上,情報、決策與作戰一體化將取得快速進展。在武器裝備上,將特別注重各作戰 平台的系統融合和無縫鏈接,以保證戰場信息的實時快速流轉,縮短從「感測器到射手」的時間差,實現「發現即摧毀」的作戰目標。
比如近幾年迅速發展的無人機作戰平台,其本質就是一個智能系統。其可以成建制地對實時捕獲的重要目標進行「發現即摧毀」式的精確打擊,還能通過融合情報的 前端和後端,使數據流程與作戰流程無縫鏈接並相互驅動,構建全方位遂行聯合作戰的「偵打一體」體系,從而實現了體系化的「從感測器到射手」的重大突破。
7.推動戰爭形態的演變
大數據可以改變未來的戰爭形態。美軍一直追求從感測器到平台的實時打擊能力,追求零傷亡。
由大數據支撐的擁有自主能力的無人作戰平台,將使得這些追求成為可能。例如,目前全世界最先進的無人偵察機「全球鷹」,能連續監視運動目標,准確識別地面 的各種飛機、導彈和車輛的類型,甚至能清晰分辨出汽車輪胎的類型。現今,美空軍的無人機數量已經超過了有人駕駛的飛機,或許不久的將來,美軍將向以自主無 人系統為主的,對網路依賴度逐漸降低的「數據中心戰」邁進。
無人機能否做到實時地對圖像進行傳輸非常關鍵。
目前,美國正使用新一代極高頻的通訊衛星作為大數據平台的支撐。未來,無人機甚至有可能擺脫人的控制實現完全的自主行動。美軍試驗型無人戰斗機X-47B就是這一趨勢的代表,它已經可以在完全無人干預的情況下,自動在航母上完成起降並執行作戰任務。
總之,基於大數據的實時、無人化作戰,將徹底改變人類幾千年來以有生力量為主的戰爭形態。
8.引導軍事組織形式變革
大數據即大融合,它有望打破軍種之間的壁壘,解決軍隊跨軍種、跨部門協作的問題,真正實現一體化作戰。
就組織形態而言,扁平結構、層次簡捷、高度集成、體系融合應該更符合大數據時代的要求。軍事方面的相關趨勢有:
(1)網狀化。軍隊的指揮體系逐步發展為「指揮網」,原先的「樹狀結構」變為 「網狀結構」。一個師的指揮系統一旦被打垮,師以下各級可通過「網」與上級或其他作戰單元聯系。這就改變了傳統軍事指揮體系由「樹干、樹枝、樹葉」編成的 組織形態,避免了機械化戰爭時期「打斷一枝、癱瘓一片」的指揮弊端,有效提高了局部戰爭中的指揮效能。
(2)小型化。發達國家的陸軍多由軍、師、團、營體制向軍、旅、營制轉變,使作戰集團更加輕便靈活,機動性更強。 根據部隊的不同功能優化組合,基本作戰單位不需要加強補充就能實施多種作戰,從而全面提高應對多種安全威脅,完成多樣化軍事任務的能力。將營作為基本戰術 「模塊」,將旅作為基本合成單位,以搭積木方式進行編組,戰時根據需要臨時編組,看迅速生成擔負不同作戰任務的部隊。
世界各主要國家都非常重視軍隊組織形態變革,並致力於發展新興軍兵種,及時設計和建設新型部隊。
2009年,美國國防部宣布組建網路戰司令部。2013年3月,美國網路戰司令部司令亞力山大宣布,美國將增加40支網路戰部隊。美國、俄羅斯等國都在積極籌劃或正在建設能在太空進行作戰的「天軍」部隊、「機器人」部隊。
隨著新興軍兵種的建立,軍隊的組織形態將出現新面貌,未來戰爭的觸角不斷延伸,網路、電磁頻譜領域的爭奪方興未艾,太空不再是寂寞世界,天戰也不再遙遠。
(3)一體化。軍隊信息化必然要求一體化,信息化程度越高,一體化特徵越明顯。適應新形勢下強軍目標的要求,我軍必須對戰鬥力要素進行一體化整合,推進武裝力量一體化、軍隊編成一體化、指揮控制一體化、作戰要素一體化,提高整體效益。
9.大數據將使體系作戰能力大幅提升
從作戰手段角度看,大數據及其支撐的新型武器裝備的應用,將豐富軍隊的作戰體系;從作戰效能角度看,大數據下的作戰行動循環(包以德循環)所耗時間將大為縮短,更符合「未來戰爭不是大吃小,而是快吃慢」的制勝規律。相關變革的結果,將是軍隊體系作戰能力大幅提升。
10.提升軍隊的信息化建設水平
大數據給了各國軍隊(尤其是像我軍這樣的信息化發展水平參差不齊的軍隊)一個契機,可以牽引、拉動自身的信息化建設向更高層次發展,同時拉齊整體水平,因為大數據意味著「整體」。
具體來說,應以提高決策速度、反應速度和聯合作戰能力為目標,以數據為中心,以搜索分析處理數據為中樞架構,自上而下建設軍事「數據網路」;加快組建雲計 算中心,把對大數據分析處理作為軍事信息化建設的重中之重,努力建構精確分析處理大數據的硬體系統、軟體模型,實現大數據「從數據轉化為決策」的智能化和 瞬時化。
同時,也要抓好末端的單兵及單件武器裝備的數據採集、存儲設備設計,從而為海量數據的挖掘和整合奠定基
『陸』 大數據反恐怎麼做
美國國防部長卡特(AshCarter)曾赴矽谷招募頂尖科技人才。近年來的信息大爆炸使得五角大樓不得不將目光聚焦高科技矽谷,以打擊反恐。美國中央情報局的CTOGusHunt表示,為了提高情報分析能力,他們已經加快了運用雲計算的步伐。
神秘的大數據平台Palantir就是美國CIA、FBI等尋求的合作對象。Palantir最為人津津樂道的案例有兩個,一是此前美國政府追捕本拉登行動中,Palantir扮演了重要的情報分析的角色;二是Palantir協助多家銀行追回了納斯達克前大大麥道夫BernieMadoff所隱藏起來的數十億美元巨款。
Palantir在洛杉磯警局通過技術與業務的深入交流與合作,採用Palantir的Gotham平台,構建了一-套洛杉磯警局的語義知識搜索挖掘平台,用於日常的警方業務工作中。該平台全面整合警情日誌文檔、電子表格數據、資料庫等結構化數據和電子郵件、文檔、圖片、錄像等非結構化數據,對各類多源異構,繁雜的信息進行清洗梳理,總結提煉為八個關鍵的信息實體:人、車、位置、罪案、逮捕、文件、備注與其他。實體本身還有不同的屬性,不同個體之間還存在這相應的知識關聯。Palantir公安大數據語義知識搜索平台建立以後,警方就可以通過非常簡潔的前端搜索頁面,來搜索指定的各類實體與線索。 詳情地址:http://www.zishu010.com/z/newdetail.html?cid=9370396&key=%E5%8F%8D%E6%81%90&privatetypeid=&ctype=-1
『柒』 Palantir如何利用大數據防恐
Palantir技術揭秘對公安大數據的啟示
美國Palantir公司2004年在矽谷成立,目前公司估值200億美元,是全球最大的大數據公司,在情報整合與反恐方面一直非常神秘,一度傳言其在美國CIA捕殺本·拉登的過程中起到了至關重要的作用,後證實為謠言。不過,公開可證實的資料表明:Palantir趕在阿富汗的簡易爆炸裝置引爆前成功預言了它們的位置,並幫助整合美國情報界零散的資料庫,為安全人員提供了一體化的情報網。美國CIA以及洛杉磯警方等多個權威機構都為Palantir公開站台,證實了這家公司的大數據技術在情報分析、安全防範以及反恐方面起到了不可或缺的重要作用,對我們公安大數據平台的建設具有重要的借鑒意義。為此,本文將介紹Palantir在美國洛杉磯警局的實戰案例,揭秘其背後的關鍵技術,並匯報我們實驗室在公安某局的初步實踐工作,最終給出我們對公安大數據的部分思考。
Palantir洛杉磯警局應用的技術揭秘
Palantir在洛杉磯警局通過技術與業務的深入交流與合作,採用Palantir的Gotham平台,構建了一套洛杉磯警局的語義知識搜索挖掘平台,用於日常的警方業務工作中。該平台全面整合警情日誌文檔、電子表格數據、資料庫等結構化數據和電子郵件、文檔、圖片、錄像等非結構化數據,對各類多源異構,繁雜的信息進行清洗梳理,總結提煉為八個關鍵的信息實體:人、車、位置、罪案、逮捕、文件、備注與其他。實體本身還有不同的屬性,不同個體之間還存在這相應的知識關聯。Palantir公安大數據語義知識搜索平台建立以後,警方就可以通過非常簡潔的前端搜索頁面,來搜索指定的各類實體與線索。
Palantir的搜索結果與網路等通用搜索引擎完全不一樣,並不完全基於關鍵詞,而是探索搜索背後的關聯關系,搜索結果如下圖所示。這里,中間的焦掉是搜索的嫌疑人「Michael Barton」,通過Palantir平台,可以快速將各類龐雜的數據通過可視化平台的形式匯聚到一起,最終我們發現該犯綜合立體化視圖,其中包括:使用的手機,入境記錄,逮捕時開的車,逮捕的案子,同時涉嫌一起盜竊案,包括已有的兩次審訊記錄。點擊任何一個節點,右邊會展示其詳細的屬性與其他實體的關聯關系。例如,點擊該車,可以展示出該車的歷史所有被抓拍的照片與數據。辦案人員同時可以根據關聯連接一層一層往下挖,並人機互動,補充各種篩選條件,將模糊的破案線索逐步求精,最後極大的提高破案准確性與效率。
圖2:警情大數據三類案件的特徵畫像
公安作為與海量證據、線索、數據、信息打交道的部門,使用好已有的數據信息,將門類龐雜、種類繁多的海量公安數據進行整合,建立統一的公安大數據語義知識網搜索平台,全面而深入挖掘信息之間的關聯關系,這對於提取關鍵線索、提高辦案效率具有非常重要的現實意義,更對於優化警力部署、提前制定預案,將違法犯罪事件扼殺在萌芽狀態具有重大指導意義。
以上由物聯傳媒轉載,如有侵權聯系刪除