當大數據遇上信息安全2016年5月
Ⅰ 大數據背景下,如何保護個人信息安全600字
這個真寫不出來
Ⅱ 大數據時代信息安全問題點有哪些
"大數據"之"大"實際上指的是它的種類豐富、存儲量大,因此管理起來是一個具有挑戰性的工作。然而,無論從企業存儲策略與環境來看,還是從數據與存儲操作的角度來看,"管理風險"不可避免地成為了"大數據就是大風險"的潛在推力。紅線隱私保護系統表示,大數據讓人歡喜讓人憂,圍繞它的問題主要體現在五個方面。
1、雲數據:目前來看,企業快速採用和實施諸如雲服務等新技術還是存在不小的壓力,因為它們可能帶來無法預料的風險和造成意想不到的後果。而且,雲端的大數據對於黑客們來說是個極具吸引力的獲取信息的目標,所以這就對企業制定安全正確的雲計算采購策略提出了更高的要求。
2、網路安全:隨著在線交易、在線對話、在線互動,在線數據越來越多,黑客們的犯罪動機也比以往任何時候都來得強烈。如今的黑客們組織性更強,更加專業,作案工具也是更加強大,作案手段更是層出不窮。相比於以往一次性數據泄露或者黑客攻擊事件的小打小鬧,現在數據一旦泄露,對整個企業可以說是一著不慎滿盤皆輸,不僅會導致聲譽受損、造成巨大的經濟損失,嚴重的還要承擔法律責任。所以在大數據時代,網路的恢復能力以及防範策略可以說是至關重要。
3、隱私:隨著產生、存儲、分析的數據量越來越大,隱私問題在未來的幾年也將愈加凸顯。所以新的數據保護要求以及立法機構和監管部門的完善應當提上日程。
4、消費化:眾所周知,數據的搜集、存儲、訪問、傳輸必不可少的需要藉助移動設備,所以大數據時代的來臨也帶動了移動設備的猛增。現在很多用戶互聯網體驗都已經轉向了移動端,移動設備更多的承載了數據儲存工具。
5、互相聯系的供應鏈:每個企業都是復雜的、全球化的、相互依存的供應鏈中的一部分,而供應鏈很可能就是最薄弱的環節。信息將供應鏈緊密地聯系在一起,從簡單的數據到商業機密再到知識產權,而信息的泄露可能導致名譽受損、經濟損失、甚至是法律制裁。信息安全的重要性也就不言而喻了,它在協調企業之間承包和供應等業務關系扮演著舉足輕重的角色。
Ⅲ 大數據時代給信息安全帶來的挑戰
大數據時代給信息安全帶來的挑戰
在大數據時代,商業生態環境在不經意間發生了巨大變化:無處不在的智能終端、隨時在線的網路傳輸、互動頻繁的社交網路,讓以往只是網頁瀏覽者的網民的面孔從模糊變得清晰,企業也有機會進行大規模的精準化的消費者行為研究。大數據藍海將成為未來競爭的制高點。
大數據在成為競爭新焦點的同時,不僅帶來了更多安全風險,同時也帶來了新機遇。
一、大數據成為網路攻擊的顯著目標。
在網路空間,大數據是更容易被「發現」的大目標。一方面,大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。另一方面,數據的大量匯集,使得黑客成功攻擊一次就能獲得更多數據,無形中降低了黑客的進攻成本,增加了「收益率」。
二、大數據加大隱私泄露風險。
大量數據的匯集不可避免地加大了用戶隱私泄露的風險。一方面,數據集中存儲增加了泄露風險,而這些數據不被濫用,也成為人身安全的一部分。另一方面,一些敏感數據的所有權和使用權並沒有明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題。
三、大數據威脅現有的存儲和安防措施。
大數據存儲帶來新的安全問題。數據大集中的後果是復雜多樣的數據存儲在一起,很可能會出現將某些生產數據放在經營數據存儲位置的情況,致使企業安全管理不合規。大數據的大小也影響到安全控制措施能否正確運行。安全防護手段的更新升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
四、大數據技術成為黑客的攻擊手段。
在企業用數據挖掘和數據分析等大數據技術獲取商業價值的同時,黑客也在利用這些大數據技術向企業發起攻擊。黑客會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使黑客的攻擊更加精準。此外,大數據也為黑客發起攻擊提供了更多機會。黑客利用大數據發起僵屍網路攻擊,可能會同時控制上百萬台傀儡機並發起攻擊。
五、大數據成為高級可持續攻擊的載體。
傳統的檢測是基於單個時間點進行的基於威脅特徵的實時匹配檢測,而高級可持續攻擊(APT)是一個實施過程,無法被實時檢測。此外,由於大數據的價值低密度特性,使得安全分析工具很難聚焦在價值點上,黑客可以將攻擊隱藏在大數據中,給安全服務提供商的分析製造很大困難。黑客設置的任何一個會誤導安全廠商目標信息提取和檢索的攻擊,都會導致安全監測偏離應有方向。
六、大數據技術為信息安全提供新支撐。
當然,大數據也為信息安全的發展提供了新機遇。大數據正在為安全分析提供新的可能性,對於海量數據的分析有助於信息安全服務提供商更好地刻畫網路異常行為,從而找出數據中的風險點。對實時安全和商務數據結合在一起的數據進行預防性分析,可識別釣魚攻擊,防止詐騙和阻止黑客入侵。網路攻擊行為總會留下蛛絲馬跡,這些痕跡都以數據的形式隱藏在大數據中,利用大數據技術整合計算和處理資源有助於更有針對性地應對信息安全威脅,有助於找到攻擊的源頭。
Ⅳ 大數據時代個人的信息安全面臨什麼問題
近日,大數據時代個人的信息安全,正成為國內外輿論關注的焦點。
國內有網友發現,同樣的商品或服務,老客戶看到的價格反而比新客戶要貴出許多,在機票、酒店、電影、電商、出行等多個價格有波動的平台都存在類似情況。這在互聯網行業被稱作「大數據殺熟」。另外,李彥宏在中國高層發展論壇上就個人信息利用問題發表的觀點——「我想中國人可以更加開放,對隱私問題沒有那麼敏感。如果他們願意用隱私交換便捷性,很多情況下他們是願意的,那我們就可以用數據做一些事情。」此言一出,李彥宏成為眾矢之的。
很長一段時間以來,我們享受到了大數據時代帶來的種種便利,而忽視個人信息被攫取和利用的巨大風險。我們本以為逃匿在網路空間是為了「隱身」,可在互聯網企業眼裡,我們其實是在「裸奔」。人們關於個人信息安全的保護意識,開始蘇醒。
Ⅳ 如何利用大數據來處理網路安全攻擊
「大數據」已經成為時下最火熱的IT行業詞彙,各行各業的大數據解決方案層出不窮。究竟什麼是大數據、大數據給信息安全帶來哪些挑戰和機遇、為什麼網路安全需要大數據,以及怎樣把大數據思想應用於網路安全技術,本文給出解答。
一切都源於APT
APT(Advanced Persistent Threat)攻擊是一類特定的攻擊,為了獲取某個組織甚至是國家的重要信息,有針對性的進行的一系列攻擊行為的整個過程。APT攻擊利用了多種攻擊手段,包括各種最先進的手段和社會工程學方法,一步一步的獲取進入組織內部的許可權。APT往往利用組織內部的人員作為攻擊跳板。有時候,攻擊者會針對被攻擊對象編寫專門的攻擊程序,而非使用一些通用的攻擊代碼。此外,APT攻擊具有持續性,甚至長達數年。這種持續體現在攻擊者不斷嘗試各種攻擊手段,以及在滲透到網路內部後長期蟄伏,不斷收集各種信息,直到收集到重要情報。更加危險的是,這些新型的攻擊和威脅主要就針對國家重要的基礎設施和單位進行,包括能源、電力、金融、國防等關繫到國計民生,或者是國家核心利益的網路基礎設施。
現有技術為什麼失靈
先看兩個典型APT攻擊案例,分析一下盲點在哪裡:
1、 RSA SecureID竊取攻擊
1) 攻擊者給RSA的母公司EMC的4名員工發送了兩組惡意郵件。郵件標題為「2011 Recruitment Plan」,寄件人是[email protected],正文很簡單,寫著「I forward this file to you for review. Please open and view it.」;裡面有個EXCEL附件名為「2011 Recruitment plan.xls」;
2) 很不幸,其中一位員工對此郵件感到興趣,並將其從垃圾郵件中取出來閱讀,殊不知此電子表格其實含有當時最新的Adobe Flash的0day漏洞(CVE-2011-0609)。這個Excel打開後啥也沒有,除了在一個表單的第一個格子裡面有個「X」(叉)。而這個叉實際上就是內嵌的一個Flash;
3) 該主機被植入臭名昭著的Poison Ivy遠端控制工具,並開始自BotNet的C&C伺服器(位於 good.mincesur.com)下載指令進行任務;
4) 首批受害的使用者並非「位高權重」人物,緊接著相關聯的人士包括IT與非IT等伺服器管理員相繼被黑;
5) RSA發現開發用伺服器(Staging server)遭入侵,攻擊方隨即進行撤離,加密並壓縮所有資料(都是rar格式),並以FTP傳送至遠端主機,又迅速再次搬離該主機,清除任何蹤跡;
6) 在拿到了SecurID的信息後,攻擊者就開始對使用SecurID的公司(例如上述防務公司等)進行攻擊了。
2、 震網攻擊
遭遇超級工廠病毒攻擊的核電站計算機系統實際上是與外界物理隔離的,理論上不會遭遇外界攻擊。堅固的堡壘只有從內部才能被攻破,超級工廠病毒也正充分的利用了這一點。超級工廠病毒的攻擊者並沒有廣泛的去傳播病毒,而是針對核電站相關工作人員的家用電腦、個人電腦等能夠接觸到互聯網的計算機發起感染攻擊,以此 為第一道攻擊跳板,進一步感染相關人員的U盤,病毒以U盤為橋梁進入「堡壘」內部,隨即潛伏下來。病毒很有耐心的逐步擴散,利用多種漏洞,包括當時的一個 0day漏洞,一點一點的進行破壞。這是一次十分成功的APT攻擊,而其最為恐怖的地方就在於極為巧妙的控制了攻擊范圍,攻擊十分精準。
以上兩個典型的APT攻擊案例中可以看出,對於APT攻擊,現代安全防禦手段有三個主要盲點:
1、0day漏洞與遠程加密通信
支撐現代網路安全技術的理論基礎最重要的就是特徵匹配,廣泛應用於各類主流網路安全產品,如殺毒、入侵檢測/防禦、漏洞掃描、深度包檢測。Oday漏洞和遠程加密通信都意味著沒有特徵,或者說還沒來得及積累特徵,這是基於特徵匹配的邊界防護技術難以應對的。
2、長期持續性的攻擊
現代網路安全產品把實時性作為衡量系統能力的一項重要指標,追求的目標就是精準的識別威脅,並實時的阻斷。而對於APT這種Salami式的攻擊,則是基於實時時間點的檢測技術難以應對的。
3、內網攻擊
任何防禦體系都會做安全域劃分,內網通常被劃成信任域,信任域內部的通信不被監控,成為了盲點。需要做接入側的安全方案加固,但不在本文討論范圍。
大數據怎麼解決問題
大數據可總結為基於分布式計算的數據挖掘,可以跟傳統數據處理模式對比去理解大數據:
1、數據采樣——>全集原始數據(Raw Data)
2、小數據+大演算法——>大數據+小演算法+上下文關聯+知識積累
3、基於模型的演算法——>機械窮舉(不帶假設條件)
4、精確性+實時性——>過程中的預測
使用大數據思想,可對現代網路安全技術做如下改進:
1、特定協議報文分析——>全流量原始數據抓取(Raw Data)
2、實時數據+復雜模型演算法——>長期全流量數據+多種簡單挖掘演算法+上下文關聯+知識積累
3、實時性+自動化——>過程中的預警+人工調查
通過傳統安全防禦措施很難檢測高級持續性攻擊,企業必須先確定日常網路中各用戶、業務系統的正常行為模型是什麼,才能盡早確定企業的網路和數據是否受到了攻擊。而安全廠商可利用大數據技術對事件的模式、攻擊的模式、時間、空間、行為上的特徵進行處理,總結抽象出來一些模型,變成大數據安全工具。為了精準地描述威脅特徵,建模的過程可能耗費幾個月甚至幾年時間,企業需要耗費大量人力、物力、財力成本,才能達到目的。但可以通過整合大數據處理資源,協調大數據處理和分析機制,共享資料庫之間的關鍵模型數據,加快對高級可持續攻擊的建模進程,消除和控制高級可持續攻擊的危害。
Ⅵ 大數據時代的到來,拿什麼拯救網路信息安全
對於個人來說,要注意自己資料的隱私。對於企業來說,做好隱私保護的同時,要及時對網路進行監控,發現泄密,不良信息。
目前,已經有很多企業通過網路輿情監測技術來保護自己,同時獲取有價值的數據,信息。
以上就是網路輿情系統的效果,應用。其實就是對網路公開信息進行監控。
具體的用途如下:
1. 可實時監測微博,論壇,博客,新聞,搜索引擎中相關信息
2. 可對重點QQ群的聊天內容進行監測
3. 可對重點首頁進行定時截屏監測及特別頁面證據保存
4. 對於新聞頁面可以找出其所有轉載頁面
5. 系統可自動對信息進行分類
6. 系統可追蹤某個專題或某個作者的所有相關信息
7. 監測人員可對信息進行挑選,再分類
8. 監測人員可以基於自己的工作結果輕松導出製作含有圖表的輿情日報周報