大數據雲平台

大數據概念的興起,人們越來越認識到數據的價值。我們每天都在和數據打交道,但充分挖掘數據的價值,卻總顯得有些力不從心。企業當中,普遍存在一種情況,那就是「用報表的不做報表,做報表的不用報表」。既然我們做報表是為管理決策者服務的,那麼,我們怎麼樣才能讓我們的工作變得更有價值呢?很簡單,就是通過有效的工具幫助管理決策者充分挖掘數據的價值。要充分挖掘數據的價值,就要解決三個問題:
1、數據易於獲取
2、數據易於閱讀
3、數據易於分析
於是,Speed-BI雲平台應運而生。Speed-BI雲平台是EXCEL的功能延伸,它充分利用EXCEL強大數據整理的結果,將它可視化,實現更靈活的分析,你只要有原始的數據底稿,了解自己的業務,就可以讓數據說話,發現問題,找到規律。
綠色敏捷:只需要將你現在手頭的excel數據底稿上傳,就可以快速生成圖表,實現移動訪問,整個過程最快只要1分鍾!沒有任何技術門檻,無需任何IT知識,不需要安裝,隨時可以使用。

㈡ 如何搭建大數據雲平台具備要素高並發

你好,您應該是景區或者文旅部門機構,這個問題深入展開不是一句兩句能講清楚地哈,內簡單說一下容目前現狀:目前全國范圍內搭建的規范還沒有,各地從金額來說幾千萬到幾十萬的方式都有,金額特別大的項目大概率是基建和裝修及硬體采買。如果是一個基礎設施完善的機構,基本是信息集成,包括票務、攝像、投訴、客流、停車場管理、廣播通信(一般在應急平台上)、口碑等;如果基礎設施落後,個人建議也沒有必要花太多錢去搞基建,你建設的目的是為了應用,直接找相應的數據服務公司就好了,自己又不用培養數據方面的人才,直接使用數據服務很方便,每年付費也比一下投入大量資金用於基建只有一個空殼子要好,現在國內科技公司越來下沉行業,大量的案例應用服務基本滿足大部分客戶需求了,沒必要自己照搬一套在自己本地。據我了解網路騰訊阿里都有文旅服務的部門,也有專注做文旅數據市場服務的,好像叫海鰻,他們海字輩的企業一堆,都針對不同行業。我作為文旅管委會的從業者,還是建議直接買服務,我們自己景區建的中心都沒有數據,領導也走了,晾在那每人管了,太浪費了。

㈢ 簡述什麼是大數據,雲計算,以及它們的應用實例

大數據:是抄一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

雲計算:是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲計算最初的目標是對資源的管理,管理的主要是計算,存儲,網路資源。

海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。說到大數據,就不得不講雲計算。這些數據是怎麼計算,怎麼處理的,就和雲計算分不開家。雲計算是提取大數據的前提,強大的雲計算能力,對於降低數據提取過程中的成本不可或缺。雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。

㈣ 什麼叫大數據,與雲計算有何關系。

1,大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產

2,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。

他倆之間的關系你可以這樣來理解,雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。

(4)大數據雲平台功能擴展閱讀:

大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。

雲計算的關鍵詞在於「整合」,無論你是通過現在已經很成熟的傳統的虛擬機切分型技術,還是通過google後來所使用的海量節點聚合型技術,他都是通過將海量的伺服器資源通過網路進行整合,調度分配給用戶,從而解決用戶因為存儲計算資源不足所帶來的問題。

大數據正是因為數據的爆發式增長帶來的一個新的課題內容,如何存儲如今互聯網時代所產生的海量數據,如何有效的利用分析這些數據等等。

大數據的趨勢:

趨勢一:數據的資源化

何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。

趨勢二:與雲計算的深度結合

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

趨勢三:科學理論的突破

隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。

參考資料:網路-大數據網路-雲數據

㈤ 大數據服務平台是什麼有什麼用

現今社會每時每刻都在產生數據,企業內部的經營交易信息、物聯網世界中的商內品物流信息,互容聯網世界中的人與人交互信息、位置信息等,我們身邊處處都有大數據。而大數據服務平台則是一個集數據接入、數據處理、數據存儲、查詢檢索、分析挖掘等、應用介面等為一體的平台,然後通過在線的方式來提供數據資源、數據能力等來驅動業務發展的服務,國外如Amazon ,Oracle,IBM,Microsoft...國內如華為,商理事等公司都是該服務的踐行者。

㈥ 什麼叫大數據 與雲計算有何關系

大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據的4V特點:Volume、Velocity、Variety、Veracity。大的數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。 關於大數據和雲計算的關系人們通常會有誤解。而且也會把它們混起來說,分別做一句話直白解釋就是:雲計算就是硬體資源的虛擬化;大數據就是海量數據的高效處理。 雖然上面的一句話解釋不是非常的貼切,但是可以幫助你簡單的理解二者的區別。另外,如果做一個更形象的解釋,雲計算相當於我們的計算機和操作系統,將大量的硬體資源虛擬化之後再進行分配使用,在雲計算領域目前的老大應該算是Amazon,可以說為雲計算提供了商業化的標准,另外值得關注的還有VMware(其實從這一點可以幫助你理解雲計算和虛擬化的關系),開源的雲平台最有活力的就是Openstack了; 大數據相當於海量數據的「資料庫」,而且通觀大數據領域的發展也能看出,當前的大數據處理一直在向著近似於傳統資料庫體驗的方向發展,Hadoop的產生使我們能夠用普通機器建立穩定的處理TB級數據的集群,把傳統而昂貴的並行計算等概念一下就拉到了我們的面前,但是其不適合數據分析人員使用(因為MapRece開發復雜),所以PigLatin和Hive出現了(分別是Yahoo!和facebook發起的項目,說到這補充一下,在大數據領域Google、facebook、twitter等前沿的互聯網公司作出了很積極和強大的貢獻),為我們帶來了類SQL的操作,到這里操作方式像SQL了,但是處理效率很慢,絕對和傳統的資料庫的處理效率有天壤之別,所以人們又在想怎樣在大數據處理上不只是操作方式類SQL,而處理速度也能「類SQL」,Google為我們帶來了Dremel/PowerDrill等技術,Cloudera(Hadoop商業化最強的公司,Hadoop之父cutting就在這里負責技術領導)的Impala也出現了。 整體來看,未來的趨勢是,雲計算作為計算資源的底層,支撐著上層的大數據處理,而大數據的發展趨勢是,實時互動式的查詢效率和分析能力,借用Google一篇技術論文中的話,「動一下滑鼠就可以在秒級操作PB級別的數據」難道不讓人興奮嗎?(田原)

㈦ 什麼是大數據平台

我們在搜索引擎中每一次搜索的記錄、在電子商城中每一次的商品瀏覽和購買記錄、每一次電子支付的數據...這些看似不相乾的龐雜數據,匯總在一起,經過分析提煉,即可描繪出你這個人的行為習慣概況,對你未來可能採取的行為做出概率相當高的預測,這些數據我們可以把它統稱為顧客大數據。
移動互聯網興起之時,大家都在搶占線上流量、線上數據,但中國互聯網,你懂的,基本上龐大的消費顧客大數據都是掌握在BAT手上的,小互聯網公司很難獲取核心數據。但是隨著線下消費升級的發展,越來越多的人開始看到線下顧客大數據的重要性了,畢竟,線下店鋪才是顧客消費的主戰場,而且流量也未被BAT這樣的巨頭企業瓜分完,可以算是充滿商機的藍海了。
藍海歸藍海,但也存在一個問題,就是線下顧客大數據太龐大,太分散,除了星巴克麥當勞這種大企業有能力收集之外,一般店鋪難以建立自己的大數據平台,更不用談大數據的智能化處理了。
在這方面,目前就我所知,有家專門服務線下店鋪市場的智慧店鋪企業,名叫掌貝。這是家店鋪Marketing Tech智能營銷公司,它依託融合業務入口所沉澱的店鋪大數據,幫助商戶搭建自己的顧客大數據平台,實現自動化的精準營銷,從而帶動老客迴流、新客引流。可謂是正好切中線下顧客大數據市場的要害啦,有興趣的人可以去了解下。

㈧ 大數據和雲計算的區別

雲計算和大數據的區別是什麼?關於大數據和雲計算的關系人們通常會有誤解。而且也會把它們混起來說,分別做一句話直白解釋就是:雲計算就是硬體資源的虛擬化;大數據就是海量數據的高效處理。
大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲是網路、互聯網的一種比喻說法。過去在圖中往往用雲來表示電信網,後來也用來表示互聯網和底層基礎設施的抽象。

雲計算相當於我們的計算機和操作系統,將大量的硬體資源虛擬化之後再進行分配使用,在雲計算領域目前的老大應該算是Amazon,可以說為雲計算提供了商業化的標准,另外值得關注的還有VMware(其實從這一點可以幫助你理解雲計算和虛擬化的關系),開源的雲平台較有活力的就是Openstack了。
大數據相當於海量數據的「資料庫」,而且通觀大數據領域的發展也能看出,當前的大數據處理一直在向著近似於傳統資料庫體驗的方向發展,Hadoop的產生使我們能夠用普通機器建立穩定的處理TB級數據的集群,把傳統而昂貴的並行計算等概念一下就拉到了我們的面前,但是其不適合數據分析人員使用(因為MapRece開發復雜),所以PigLatin和Hive出現了(分別是Yahoo!和facebook發起的項目,說到這補充一下,在大數據領域Google、facebook、twitter等前沿的互聯網公司作出了很積極和強大的貢獻),為我們帶來了類SQL的操作,到這里操作方式像SQL了,但是處理效率很慢,絕對和傳統的資料庫的處理效率有天壤之別,所以人們又在想怎樣在大數據處理上不只是操作方式類SQL,而處理速度也能「類SQL」,Google為我們帶來了Dremel/PowerDrill等技術,Cloudera(Hadoop商業化較強的公司,Hadoop之父cutting就在這里負責技術領導)的Impala也出現了。

㈨ 什麼叫大數據,與雲計算有何關系

大數據(來big data),是指無法在可承自受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。 從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。