㈠ 如何看待未來五年全球大數據分析發展趨勢

最近這5年雲計算已經變成了一個現實了。像國外的AWS、IBM,他們已經成為雲專計算非常大的玩家,在屬國內我們也看到有騰訊雲、阿里雲等眾多的玩家。雲計算改變了企業的IT服務,但是從TEWI和Gartner市場的統計報告我們可以看到,幾乎所有大數據分析的廠商,他們收入的90%還是來自於線上的數據。為什麼?這是一個很現實的問題,就是我們企業裡面的數據,絕大多數的企業的數據,是不允許離開這個企業的。
所以我們分析這件事情的時候認為,企業的數據化運營工作,會變成一個以私有雲和公有雲混合到一起的服務工作。它肯定不會是以前單純的私有雲的服務,也不會是大家想像的可能在未來5年,全部變成了公有雲的服務,它會變成一個混合架構。

㈡ 大數據分析平台哪個好

國內的BI品牌都能做大數據分析,各有千秋,根據你的實際需求去挑選對比吧,朋友推薦過Smartbi,他家產品的功能和服務都還不錯。

㈢ 大數據能預測未來嗎

可不可以預測,關鍵看預測的是的人性的哪個層次。

如果是最深層的人性,不用大數據也能預測。

比如說,火災來了,大家都會跑,因為獲取安全是人性最底層的東西。

而另一個極端的,最淺層的人性偏好也用不上大數據,因為根本預測不了。

比如說,你已經連吃了三頓火鍋兒,那大數據只能預測你下一頓還吃火鍋兒。

這肯定不靠譜,你已經吃煩了嘛!

所以,大數據的用武之地在於人性中一些不深不淺的地方。

比如說,北京市下個月紙尿布的銷量、明年全國報考公務員的人數等等。

他最後總結說:人性是這個世界的根本,科技只是探察和延伸人性的手段。

(3)gartner預測大數據圖擴展閱讀:

大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

㈣ 大數據分析平台哪家好

以下為大家介紹幾個代表性數據分析平台:
1、 Cloudera
Cloudera提供一個可擴展、靈活、集成的平台,可用來方便的管理您的企業中快速增長的多種多樣的數據,從而部署和管理Hadoop和相關項目、操作和分析您的數據以及保護數據的安全。Cloudera Manager是一個復雜的應用程序,用於部署、管理、監控CDH部署並診斷問題,Cloudera Manager提供Admin Console,這是一種基於Web的用戶界面,是您的企業數據管理簡單而直接,它還包括Cloudera Manager API,可用來獲取集群運行狀況信息和度量以及配置Cloudera Manager。
2、 星環Transwarp
基於hadoop生態系統的大數據平台公司,國內唯一入選過Gartner魔力象限的大數據平台公司,對hadoop不穩定的部分進行了優化,功能上進行了細化,為企業提供hadoop大數據引擎及資料庫工具。
3、 阿里數加
阿里雲發布的一站式大數據平台,覆蓋了企業數倉、商業智能、機器學習、數據可視化等領域,可以提供數據採集、數據深度融合、計算和挖掘服務,將計算的幾個通過可視化工具進行個性化的數據分析和展現,圖形展示和客戶感知良好,但是需要捆綁阿里雲才能使用,部分體驗功能一般,需要有一定的知識基礎。maxcompute(原名ODPS)是數加底層的計算引擎,有兩個維度可以看這個計算引擎的性能,一個是6小時處理100PB的數據,相當於1億部高清電影,另外一個是單集群規模過萬台,並支持多集群聯合計算。
4、 華為FusionInsight
基於Apache進行功能增強的企業級大數據存儲、查詢和分析的統一平台。完全開放的大數據平台,可運行在開放的x86架構伺服器上,它以海量數據處理引擎和實時數據處理引擎為核心,針對金融、運營商等數據密集型行業的運行維護、應用開發等需求,打造了敏捷、智慧、可信的平台軟體。
5、網易猛獁
網易猛獁大數據平台使一站式的大數據應用開發和數據管理平台,包括大數據開發套件和hadoop發行版兩部分。大數據開發套件主要包含數據開發、任務運維、自助分析、數據管理、項目管理及多租戶管理等。大數據開發套件將數據開發、數據分析、數據ETL等數據科學工作通過工作流的方式有效地串聯起來,提高了數據開發工程師和數據分析工程師的工作效率。Hadoop發行版涵蓋了網易大數據所有底層平台組件,包括自研組件、基於開源改造的組件。豐富而全面的組件,提供完善的平台能力,使其能輕易地構建不同領域的解決方案,滿足不同類型的業務需求。
6.知於大數據分析平台
知於平台的定位與當今流行的平台定位不一樣,它針對的主要是中小型企業,為中小型企業提供大數據解決方案。現階段,平台主打的產品是輿情系統、文章傳播分析與網站排名監測,每個服務的價格單次在50元左右,性價比極高。

㈤ 常見大數據應用有哪些

Gartner的分析師Doug Laney在講解大數據案例時提到過8個更有新意更典型的案例,可幫助更清晰的理解大數據時代的到來。
1. 梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2. Tipp24 AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3. 沃爾瑪的搜索。這家零售業寡頭為其網站自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4. 快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5. Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6. PredPol Inc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
8. American Express(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。

㈥ 大數據時代有哪些趨勢

數據驅動。實施國家大數據戰略。大數據時代的到來,讓「數據驅動」成為新的全球大趨勢。《政府工作報告》

㈦ 樹根與Gartner白皮書是什麼

里邊主要是講風口下的工業互聯網—製造業該如何選擇合適的商業夥伴,還是很好的,預測和分析都做的挺全面的。